求证,如果一个三角形的面积和周长都被一直线所平分,那么该直线必通过这个三角形的内心!
高分悬赏!初三一数学题.在线等待.!
答案:2 悬赏:60 手机版
解决时间 2021-07-20 11:53
- 提问者网友:且恨且铭记
- 2021-07-19 14:04
最佳答案
- 五星知识达人网友:第四晚心情
- 2021-07-19 15:29
解析法:基本思路是,求出这条直线方程,并求出这条直线与其中一个角平分线交点坐标,根据条件化简交点坐标,得到这个交点就是内心。
三角形至于平面直角坐标系中,A(0,0),B(c,0),C(bcosA,bsinA)
则内心O坐标为(bc(1+cosA)/(a+b+c),bcsinA/(a+b+c))
一条直线DE平分△ABC的周长和面积,交AC与D,交AB与E
设AD=m,AE=n,则D(mcosA,msinA),E(n,0)
DE直线方程为y=msinA(x-n)/(mcosA-n),∠A平分线所在直线方程为:y=xtan(A/2)
这两条直线O'的坐标可得:(mn(1+cosA)/(m+n),mnsinA/(m+n))——解方程的过程得到结果需用三角公式变换得到这个结果
由直线DE平分△ABC的周长和面积,可得:
S△ABC=2S△ADE,bcsinA /2=2*mnsinA /2,mn=bc/2
m+n=(a+b+c)/2
带入O'坐标得O'坐标为:(bc(1+cosA)/(a+b+c),bcsinA/(a+b+c))
为△ABC内心
三角形至于平面直角坐标系中,A(0,0),B(c,0),C(bcosA,bsinA)
则内心O坐标为(bc(1+cosA)/(a+b+c),bcsinA/(a+b+c))
一条直线DE平分△ABC的周长和面积,交AC与D,交AB与E
设AD=m,AE=n,则D(mcosA,msinA),E(n,0)
DE直线方程为y=msinA(x-n)/(mcosA-n),∠A平分线所在直线方程为:y=xtan(A/2)
这两条直线O'的坐标可得:(mn(1+cosA)/(m+n),mnsinA/(m+n))——解方程的过程得到结果需用三角公式变换得到这个结果
由直线DE平分△ABC的周长和面积,可得:
S△ABC=2S△ADE,bcsinA /2=2*mnsinA /2,mn=bc/2
m+n=(a+b+c)/2
带入O'坐标得O'坐标为:(bc(1+cosA)/(a+b+c),bcsinA/(a+b+c))
为△ABC内心
全部回答
- 1楼网友:患得患失的劫
- 2021-07-19 16:17
你翻书我记得是例题
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯