如图,△ABC中,∠ACB=90°,CD是AB边上的高,∠CAB的角平分线分别交BC、CD于点E、F;过点E作EG⊥AB,垂足为G.
(1)求证:CF=CE;
(2)求证:CE:BE=AC:AB;
(3)若AB=10,AC=6,求CF的长.
如图,△ABC中,∠ACB=90°,CD是AB边上的高,∠CAB的角平分线分别交BC、CD于点E、F;过点E作EG⊥AB,垂足为G.(1)求证:CF=CE;(2)求证
答案:2 悬赏:60 手机版
解决时间 2021-04-11 02:16
- 提问者网友:骨子里的高雅
- 2021-04-10 04:39
最佳答案
- 五星知识达人网友:慢性怪人
- 2021-04-10 04:49
(1)证明:∵AE平分∠CAB,∠ACB=90°,EG⊥AB
∴EG=CE
∴△ACE≌△AGE
∴∠AEC=∠AEG
∵CD⊥AB,EG⊥AB
∴CD∥EG
∴∠GEF=∠CFE
∴∠CEF=∠CFE
∴CF=CE
(2)证明:∵∠ACB=90°,EG⊥AB,∠B=∠B
∴△ACB∽△EGB
∴AC:AB=EG:EB
∵EG=CE
∴CE:BE=AC:AB?
(3)解:∵∠ACB=90°,AB=10,AC=6
∴CB=8
∵EC:EB=AC:AB=3:5
∴EC=3
∴CF=EC=3.解析分析:(1)先由已知证明△ACE≌△AGE,得∠AEC=∠AEG,再由CD⊥AB,EG⊥AB推出CD∥EG得∠GEF=∠CFE,所以得∠CEF=∠CFE,从而证得CF=CE;
(2)由∠ACB=90°,EG⊥AB,∠B=∠B证明△ACB∽△EGB,得AC:AB=EG:EB,再由(1)△ACE≌△AGE,EG=CE,所以 CE:BE=AC:AB;?
(3)由勾股定理求出CB,再由EC:EB=AC:AB=3:5得出EC,从而求出CF.点评:此题考查的知识点是相似三角形的判定与性质,关键是通过三角形全等和相似解题.
∴EG=CE
∴△ACE≌△AGE
∴∠AEC=∠AEG
∵CD⊥AB,EG⊥AB
∴CD∥EG
∴∠GEF=∠CFE
∴∠CEF=∠CFE
∴CF=CE
(2)证明:∵∠ACB=90°,EG⊥AB,∠B=∠B
∴△ACB∽△EGB
∴AC:AB=EG:EB
∵EG=CE
∴CE:BE=AC:AB?
(3)解:∵∠ACB=90°,AB=10,AC=6
∴CB=8
∵EC:EB=AC:AB=3:5
∴EC=3
∴CF=EC=3.解析分析:(1)先由已知证明△ACE≌△AGE,得∠AEC=∠AEG,再由CD⊥AB,EG⊥AB推出CD∥EG得∠GEF=∠CFE,所以得∠CEF=∠CFE,从而证得CF=CE;
(2)由∠ACB=90°,EG⊥AB,∠B=∠B证明△ACB∽△EGB,得AC:AB=EG:EB,再由(1)△ACE≌△AGE,EG=CE,所以 CE:BE=AC:AB;?
(3)由勾股定理求出CB,再由EC:EB=AC:AB=3:5得出EC,从而求出CF.点评:此题考查的知识点是相似三角形的判定与性质,关键是通过三角形全等和相似解题.
全部回答
- 1楼网友:胯下狙击手
- 2021-04-10 05:00
回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯