几何图形有什么意义
答案:1 悬赏:0 手机版
解决时间 2021-02-20 03:26
- 提问者网友:美人性情
- 2021-02-19 17:52
几何图形有什么意义
最佳答案
- 五星知识达人网友:天凉才是好个秋
- 2021-02-19 18:12
问题一:几何平均数意义是怎么来的,还有能否在几何图形上解释 我们知道算术平均数,(a+b)/2,体现纯粹数字上的关系,
而根号ab,称为几何平均数,这个体现了一个几何关系,
即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b,
那么那个垂线在圆内的一半长度就是跟号ab,并且
(a+b)2>=根号ab!问题二:图形与几何是什么意思? 图形都是几何学的一种,就是小学学习的知识。它的主要内容有,平面图形和立体图形的特征,平面图形的周长和面积,以及立体图形的表面积与体积。问题三:几何学主要有什么作用 一、基本介绍 几何画板是一个通用的数学、物理教学环境,提供丰富而方便的创造功能使用户可以随心所欲地编写出自己需要的教学课件。软件提供充分的手段帮助用户实现其教学思想,只需要熟悉软件的简单的使用技巧即可自行设计和编写应用范例,范例所体现的并不是编者的计算机软件技术水平,而是教学思想和教学水平。可以说几何画板是最出色的教学软件之一。系统要求很低:PC486以上兼容机、4M以上内存、Windows3.X或Windows95简体中文版。 二、功能简介 几何画板的界面如下图 1.画线、画圆工具 《几何画板》在图形绘制上比一般的绘图软件更为精准,更符合数学的严格要求。线可分为线段、射线和直线;圆为正圆。用它可完成所有的尺规作图,演绎欧几里德几何。要绘制平行线、垂直线等常用图形,可打开“构造”菜单,直接点中所需图形即可。 2.图形变化 通过《几何画板》中的工具箱,可按指定值、计算值或动态值任意旋转、平移、缩放原有图形,并在其变化中保持几何关系不变,从而更有助于研究图形的运动和变换等问题。 3.测量和计算功能 《几何画板》可测算线段长度、各种角的角度等,并对测算出的值进行多种计算,包括四则运算、幂函数、三角函数等等。 4.绘制多种函数图象 在中文版的坐标系功能下,使用者可绘制各种复杂的函数图象。并可通过参数变化,更深入地了解函数曲线。 5.Windows应用程序中的众多功能 《几何画板》可为文字选择字体、字号;为图形添色;用剪贴板与Windows中其他程序交换信息,如给《几何画板》加一幅图画和一段声音,或把所画图形插到WORD编辑的数学试卷中。 6.制作复杂的动画 虽然不能直接制作,但《几何画板》能将较简单的动画和运动通过定义、构造和变换,得到所需的复杂运动。使用便捷的轨迹跟踪功能,能清晰地了解目标的运动轨迹。 7.制作脚本 《几何画板》可随时记录几何图形的绘制过程,并用复原和恢复进行浏览。不仅如此,脚本还可以把整个绘制过程用语言记下来。 8.保持和突出几何关系 保持几何关系是《几何画板》的精髓。画板中的几何图形无论如何变化,它们之间的几何关系都不变。这恰恰是几何学的实质,即在不断变化的几何图形中,研究不变的几何规律。 另外,《几何画板》还可以突出重要的几何关系,如把图形中不重要的部分隐藏起来或变成虚线,把重要的部分加上颜色或加大字符。问题四:数学几何图形里说的{模型}是什么意思 什么是混沌学--1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个陆龙卷,并由此提出了天气的不可准确预报性。时至今日,这一论断仍为人津津乐道,更重要的是,它激发了人们对混沌学的浓厚兴趣。今天,伴随计算机等技术的飞速进步,混沌学已发展成为一门影响深远、发展迅速的前沿科学。一般地,如果一个接近实际而没有内在随机性的模型仍然具有貌似随机的行为,就可以称这个真实物理系统是混沌的。一个随时间确定性变化或具有微弱随机性的变化系统,称为动力系统,它的状态可由一个或几个变量数值确定。而一些动力系统中,两个几乎完全一致的状态经过充分长时间后会变得毫无一致,恰如从长序列中随机选取的两个状态那样,这种系统被称为敏感地依赖于初始条件。而对初始条件的敏感的依赖性也可作为一个混沌的定义。与我们通常研究的线性科学不同,混沌学研究的是一种非线性科学,而非线性科学研究似乎总是把人们对“正常”事物“正常”现象的认识转向对“反常”事物“反常”现象的探索。例如,孤波不是周期性振荡的规则传播;“多媒体”技术对信息贮存、压缩、传播、转换和控制过程中遇到大量的“非常规”现象产生所采用的“非常规”的新方法;混沌打破了确定性方程由初始条件严格确定系统未来运动的“常规”,出现所谓各种“奇异吸引子”现象等。混沌来自于非线性动力系统,而动力系统又描述的是任意随时间发展变化的过程,并且这样的系统产生于生活的各个方面。举个例子,生态学家对某物种的长期性态感兴趣,给定一些观察到的或实验得到的变量(如捕食者个数、气候的恶劣性、食物的可获性等等),建立数学模型来描述群体的增减。如果用Pn表示n代后该物种极限数目的百分比,则著名的“罗杰斯蒂映射”:Pn+1=kP(1-Pn(k是依赖于生态条件的常数)可以用于在给定Po,k条件下,预报群体数的长期性态。如果将常数k处理成可变的参数k,则当k值增大到一定值后,“罗杰斯蒂映射”所构成的动力系统就进入混沌状态。最常见的气象模型是巨型动力系统的一个例子:温度、气压、风向、速度以及降雨量都是这个系统中随时间变化的变量。洛伦兹(E.N.Lorenz)教授于1963年《大气科学》杂志上发表了“决定性的非周期流”一文,阐述了在气候不能精确重演与长期天气预报者无能为力之间必然存在着一种联系,这就是非周期性与不可预见性之间的关系。洛伦兹在计算机上用他所建立的微分方程模拟气候变化的时候,偶然发现输入的初始条件的极细微的差别,可以引起模拟结果的巨大变化。洛伦兹打了个比喻,即我们在文首提到的关于在南半球巴西某地一只蝴蝶的翅膀的偶然扇动所引起的微小气流,几星期后可能变成席卷北半球美国得克萨斯州的一场龙卷风,这就是天气的“蝴蝶效应”。混沌不是偶然的、个别的事件,而是普遍存在于宇宙间各种各样的宏观及微观系统的,万事万物,莫不混沌。混沌也不是独立存在的科学,它与其它各门科学互相促进、互相依靠,由此派生出许多交叉学科,如混沌气象学、混沌经济学、混沌数学等。混沌学不仅极具研究价值,而且有现实应用价值,能直接或间接创造财富。混沌学的前途不可限量。
而根号ab,称为几何平均数,这个体现了一个几何关系,
即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b,
那么那个垂线在圆内的一半长度就是跟号ab,并且
(a+b)2>=根号ab!问题二:图形与几何是什么意思? 图形都是几何学的一种,就是小学学习的知识。它的主要内容有,平面图形和立体图形的特征,平面图形的周长和面积,以及立体图形的表面积与体积。问题三:几何学主要有什么作用 一、基本介绍 几何画板是一个通用的数学、物理教学环境,提供丰富而方便的创造功能使用户可以随心所欲地编写出自己需要的教学课件。软件提供充分的手段帮助用户实现其教学思想,只需要熟悉软件的简单的使用技巧即可自行设计和编写应用范例,范例所体现的并不是编者的计算机软件技术水平,而是教学思想和教学水平。可以说几何画板是最出色的教学软件之一。系统要求很低:PC486以上兼容机、4M以上内存、Windows3.X或Windows95简体中文版。 二、功能简介 几何画板的界面如下图 1.画线、画圆工具 《几何画板》在图形绘制上比一般的绘图软件更为精准,更符合数学的严格要求。线可分为线段、射线和直线;圆为正圆。用它可完成所有的尺规作图,演绎欧几里德几何。要绘制平行线、垂直线等常用图形,可打开“构造”菜单,直接点中所需图形即可。 2.图形变化 通过《几何画板》中的工具箱,可按指定值、计算值或动态值任意旋转、平移、缩放原有图形,并在其变化中保持几何关系不变,从而更有助于研究图形的运动和变换等问题。 3.测量和计算功能 《几何画板》可测算线段长度、各种角的角度等,并对测算出的值进行多种计算,包括四则运算、幂函数、三角函数等等。 4.绘制多种函数图象 在中文版的坐标系功能下,使用者可绘制各种复杂的函数图象。并可通过参数变化,更深入地了解函数曲线。 5.Windows应用程序中的众多功能 《几何画板》可为文字选择字体、字号;为图形添色;用剪贴板与Windows中其他程序交换信息,如给《几何画板》加一幅图画和一段声音,或把所画图形插到WORD编辑的数学试卷中。 6.制作复杂的动画 虽然不能直接制作,但《几何画板》能将较简单的动画和运动通过定义、构造和变换,得到所需的复杂运动。使用便捷的轨迹跟踪功能,能清晰地了解目标的运动轨迹。 7.制作脚本 《几何画板》可随时记录几何图形的绘制过程,并用复原和恢复进行浏览。不仅如此,脚本还可以把整个绘制过程用语言记下来。 8.保持和突出几何关系 保持几何关系是《几何画板》的精髓。画板中的几何图形无论如何变化,它们之间的几何关系都不变。这恰恰是几何学的实质,即在不断变化的几何图形中,研究不变的几何规律。 另外,《几何画板》还可以突出重要的几何关系,如把图形中不重要的部分隐藏起来或变成虚线,把重要的部分加上颜色或加大字符。问题四:数学几何图形里说的{模型}是什么意思 什么是混沌学--1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个陆龙卷,并由此提出了天气的不可准确预报性。时至今日,这一论断仍为人津津乐道,更重要的是,它激发了人们对混沌学的浓厚兴趣。今天,伴随计算机等技术的飞速进步,混沌学已发展成为一门影响深远、发展迅速的前沿科学。一般地,如果一个接近实际而没有内在随机性的模型仍然具有貌似随机的行为,就可以称这个真实物理系统是混沌的。一个随时间确定性变化或具有微弱随机性的变化系统,称为动力系统,它的状态可由一个或几个变量数值确定。而一些动力系统中,两个几乎完全一致的状态经过充分长时间后会变得毫无一致,恰如从长序列中随机选取的两个状态那样,这种系统被称为敏感地依赖于初始条件。而对初始条件的敏感的依赖性也可作为一个混沌的定义。与我们通常研究的线性科学不同,混沌学研究的是一种非线性科学,而非线性科学研究似乎总是把人们对“正常”事物“正常”现象的认识转向对“反常”事物“反常”现象的探索。例如,孤波不是周期性振荡的规则传播;“多媒体”技术对信息贮存、压缩、传播、转换和控制过程中遇到大量的“非常规”现象产生所采用的“非常规”的新方法;混沌打破了确定性方程由初始条件严格确定系统未来运动的“常规”,出现所谓各种“奇异吸引子”现象等。混沌来自于非线性动力系统,而动力系统又描述的是任意随时间发展变化的过程,并且这样的系统产生于生活的各个方面。举个例子,生态学家对某物种的长期性态感兴趣,给定一些观察到的或实验得到的变量(如捕食者个数、气候的恶劣性、食物的可获性等等),建立数学模型来描述群体的增减。如果用Pn表示n代后该物种极限数目的百分比,则著名的“罗杰斯蒂映射”:Pn+1=kP(1-Pn(k是依赖于生态条件的常数)可以用于在给定Po,k条件下,预报群体数的长期性态。如果将常数k处理成可变的参数k,则当k值增大到一定值后,“罗杰斯蒂映射”所构成的动力系统就进入混沌状态。最常见的气象模型是巨型动力系统的一个例子:温度、气压、风向、速度以及降雨量都是这个系统中随时间变化的变量。洛伦兹(E.N.Lorenz)教授于1963年《大气科学》杂志上发表了“决定性的非周期流”一文,阐述了在气候不能精确重演与长期天气预报者无能为力之间必然存在着一种联系,这就是非周期性与不可预见性之间的关系。洛伦兹在计算机上用他所建立的微分方程模拟气候变化的时候,偶然发现输入的初始条件的极细微的差别,可以引起模拟结果的巨大变化。洛伦兹打了个比喻,即我们在文首提到的关于在南半球巴西某地一只蝴蝶的翅膀的偶然扇动所引起的微小气流,几星期后可能变成席卷北半球美国得克萨斯州的一场龙卷风,这就是天气的“蝴蝶效应”。混沌不是偶然的、个别的事件,而是普遍存在于宇宙间各种各样的宏观及微观系统的,万事万物,莫不混沌。混沌也不是独立存在的科学,它与其它各门科学互相促进、互相依靠,由此派生出许多交叉学科,如混沌气象学、混沌经济学、混沌数学等。混沌学不仅极具研究价值,而且有现实应用价值,能直接或间接创造财富。混沌学的前途不可限量。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯