已知函数f(x)=x²+2mx+2,x∈[-5,5]⑴当m=2时,求f(x)的最大值和最小
答案:2 悬赏:60 手机版
解决时间 2021-03-09 07:13
- 提问者网友:低吟詩仙的傷
- 2021-03-08 14:12
已知函数f(x)=x²+2mx+2,x∈[-5,5]⑴当m=2时,求f(x)的最大值和最小
最佳答案
- 五星知识达人网友:话散在刀尖上
- 2021-03-08 14:53
这是一道区间上二次函数的最值问题.先说遇到这一类题,思路都是固定的,就是先找“三要素”:开口方向、对称轴、自变量的范围,然后画图.这个函数的“三要素”:开口向上(因为x²系数是正的),对称轴x=-m(不固定,随着m变化而移动),自变量的范围[-5,5]是固定的.然后想想图象,这是个向上开口的抛物线,有个最低点,在x>-m单调递增,x分析完了,你发现没有,三要素找了,图象画了,之后这道题实际上已经解决了.再整理一下即可.(1)m=2,是对称轴在里面的情况,最小值就是x=-m=-2时y的值,为-2;-2更靠近-5,所以最大值是x=5时候y的值,为47.(2)上面已经说了,-m≤-5也就是m≥5的时候,单调递增;-m≥5也就是m≤-5的时候单调递减,这二者全属于单调函数.注意,如果上面有什么不清楚的可以追问,另外如果基本公式(比如二次函数如何求对称轴)都不知道的话应该去翻课本.======以下答案可供参考======供参考答案1:⑴当m=2时,f(x)=x²+4x+2,则f'(x)=2x+4=0=>x=-2由f(-5)=7,f(-2)=-2,f(5)=47得f(x)的最大值和最小值分别为:47,-2.(2)f(x)=x²+2mx+2的图象开口向上,对称轴方程为:x=-m使y=f(x)在区间[-5,5] 上是单调函数,则-m>5且f(5)=27+10m>0所以:供参考答案2:这是一道区间上二次函数的最值问题。先说遇到这一类题,思路都是固定的,就是先找“三要素”:开口方向、对称轴、自变量的范围,然后画图。这个函数的“三要素”:开口向上(因为x²系数是正的),对称轴x=-m(不固定,随着m变化而移动),自变量的范围[-5,5]是固定的。然后想想图象,这是个向上开口的抛物线,有个最低点,在x>-m单调递增,x分析完了,你发现没有,三要素找了,图象画了,之后这道题实际上已经解决了。再整理一下即可。(1)m=2,是对称轴在里面的情况,最小值就是x=-m=-2时y的值,为-2;-2更靠近-5,所以最大值是x=5时候y的值,为47。(2)上面已经说了,-m≤-5也就是m≥5的时候,单调递增;-m≥5也就是m≤-5的时候单调递减,这二者全属于单调函数。注意,如果上面有什么不清楚的可以追问,另外如果基本公式(比如二次函数如何求对称轴)都不知道的话应该去翻课本。供参考答案3:(1)当m=2时,f(x)=(x+2)^2-2,其中(x+2)^2>=0;根据二次函数可知,函数开口向上,故最小点为对称轴处的点,最小值为X=-2(2)f(x)=(x+m)^2+2-m^2;函数开口向上,要是函数在区间[-5,5]单调,只要区间落在对称轴的一侧就可以了,取值范围是m>=5或者m
全部回答
- 1楼网友:未来江山和你
- 2021-03-08 15:29
好好学习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯