已知点A(-1,0),B(2,0),动点M满足2∠MAB=∠MBA,求点M的轨迹方程.
已知点A(-1,0),B(2,0),动点M满足2∠MAB=∠MBA,求点M的轨迹方程.
答案:1 悬赏:10 手机版
解决时间 2021-07-28 07:00
- 提问者网友:心如荒岛囚我终老
- 2021-07-28 03:52
最佳答案
- 五星知识达人网友:佘樂
- 2021-07-28 04:05
设M(x,y),∠MAB=α,则∠MBA=2α,它们是直线MA、MB的倾角还是倾角的补角,
与点M在x轴的上方还是下方有关;以下讨论:
①若点M在x轴的上方,α∈(00,900),y>0,
此时,直线MA的倾角为α,MB的倾角为π-2α,
∴tanα=kMA=
y
x+1,tan(π?2α)=
y
x?2,(2α≠900)
∵tan(π-2α)=-tan2α,∴-
y
x?2=
2?
y
x+1
1?
y2
(x+1)2,
得:x2-
y2
3=1,∵|MA|>|MB|,∴x>1.
当2α=90°时,α=45°,△MAB为等腰直角三角形,此时点M的坐标为(2,3),它满足上述方程.
②当点M在x轴的下方时,y<0,同理可得点M的轨迹方程为x2-
y2
3=1(x≥1),
③当点M在线段AB上时,也满足2∠MAB=∠MBA,此时y=0(-1<x<2).
综上所求点的轨迹方程为x2-
y2
3=1(x≥1)或y=0(-1<x<2).
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯