高一数学题!很急!
答案:1 悬赏:0 手机版
解决时间 2021-05-24 21:04
- 提问者网友:棒棒糖
- 2021-05-23 21:52
设圆:(1)截y轴弦长为2;(2)被x轴分成两段,其弧长比为3:1 。则在满足条件(1)(2)的所有园中,求圆心到直线x-2y=0的距离最小的圆的方程。
最佳答案
- 五星知识达人网友:洒脱疯子
- 2021-05-23 22:52
解:
设圆心为P(a,b),半径为r,
则P到X轴、Y轴距离分别为|b|、|a|.
由题设知圆P截X轴所得劣弧所对的圆心角为90度,知圆P所截X轴所得的弦长为 (根2)*r,故
r^2=2b
又圆P截Y轴所得弦长为2,所以有
r^2=a^2+1
从而得
2b^2-a^2=1
又P(a,b)到直线x-2y=0的距离为
d=|a-2b|/根5
--->5d^2=a^2+4b^2-4ab>=a^2+4b^2-2(a^2+b^2)=2b^2-a^2=1
当a=b时上式等号成立,
此时,5d^2=1,从而d取得最小值.
由此有{a=b,2b^2-a^2=1}
--->a=b=1,或a=b=-1
由于r^2=2b^2,则r=根2
于是,所求圆的方程是:
(x-1)^2+(y-1)^2=2,
或(x+1)^2+(y+1)^2=2.
设圆心为P(a,b),半径为r,
则P到X轴、Y轴距离分别为|b|、|a|.
由题设知圆P截X轴所得劣弧所对的圆心角为90度,知圆P所截X轴所得的弦长为 (根2)*r,故
r^2=2b
又圆P截Y轴所得弦长为2,所以有
r^2=a^2+1
从而得
2b^2-a^2=1
又P(a,b)到直线x-2y=0的距离为
d=|a-2b|/根5
--->5d^2=a^2+4b^2-4ab>=a^2+4b^2-2(a^2+b^2)=2b^2-a^2=1
当a=b时上式等号成立,
此时,5d^2=1,从而d取得最小值.
由此有{a=b,2b^2-a^2=1}
--->a=b=1,或a=b=-1
由于r^2=2b^2,则r=根2
于是,所求圆的方程是:
(x-1)^2+(y-1)^2=2,
或(x+1)^2+(y+1)^2=2.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯