数学中集合的右下角有个数字代表什么?
答案:1 悬赏:70 手机版
解决时间 2021-11-24 04:18
- 提问者网友:浮克旳回音
- 2021-11-23 18:18
数学中集合的右下角有个数字代表什么?
最佳答案
- 五星知识达人网友:零点过十分
- 2021-11-23 18:51
实际上是不存在的,根据康托连续统可以得出这样的结论
由实数所构成的集合形成更高一级的无穷集,康妥称之为阿列夫1。康妥的辉煌成就之一就是著名的“对角线证明”,它说的是阿列夫1的元素不可能与阿列夫0的元素构成一一对应关系。阿列夫1也就是在一条线段上全部点的数目。康妥证明了这些点怎样能与一条无限直线上的点一一对应,怎样与一方块上的点、与一无限大平面上的点;与一立方体中的点、与无限大空间中的点一一对应,如此下去还可以与超立方体或更高维空间中的点一一对应。阿列夫1又称为“连续统的势”。
阿列夫2是一切可能的数学函数——连续函数和不连续函数的数目。因为任何一个函数都可画为一曲线,我们把“曲线”取广义以包括不连续曲线,则阿列夫2就是一切可能的曲线数目。同样,如果我们所指的曲线是在一张邮票上,或者在一个无穷空间里,或者在一个无穷超空间里的全部曲线,这一切都没有问题,仍是阿列夫2。康妥还证明了阿列夫2不可能与阿列夫1一一对应。
当一个阿列夫数被升级为它本身的幂,则产生一个更高级的阿列夫数,它不能与产生它的阿列夫数一一对应。因此,阿列夫数的阶梯向上是无穷的。
在阿列夫数之间有没有什么超限数?比如说,有没有一个数比阿列夫零大、比阿列夫1小?康妥确信不存在这种数。他的猜测成为著名的广义连续统假设。
由实数所构成的集合形成更高一级的无穷集,康妥称之为阿列夫1。康妥的辉煌成就之一就是著名的“对角线证明”,它说的是阿列夫1的元素不可能与阿列夫0的元素构成一一对应关系。阿列夫1也就是在一条线段上全部点的数目。康妥证明了这些点怎样能与一条无限直线上的点一一对应,怎样与一方块上的点、与一无限大平面上的点;与一立方体中的点、与无限大空间中的点一一对应,如此下去还可以与超立方体或更高维空间中的点一一对应。阿列夫1又称为“连续统的势”。
阿列夫2是一切可能的数学函数——连续函数和不连续函数的数目。因为任何一个函数都可画为一曲线,我们把“曲线”取广义以包括不连续曲线,则阿列夫2就是一切可能的曲线数目。同样,如果我们所指的曲线是在一张邮票上,或者在一个无穷空间里,或者在一个无穷超空间里的全部曲线,这一切都没有问题,仍是阿列夫2。康妥还证明了阿列夫2不可能与阿列夫1一一对应。
当一个阿列夫数被升级为它本身的幂,则产生一个更高级的阿列夫数,它不能与产生它的阿列夫数一一对应。因此,阿列夫数的阶梯向上是无穷的。
在阿列夫数之间有没有什么超限数?比如说,有没有一个数比阿列夫零大、比阿列夫1小?康妥确信不存在这种数。他的猜测成为著名的广义连续统假设。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯