什么是零点函数
答案:3 悬赏:40 手机版
解决时间 2021-07-28 12:24
- 提问者网友:山高云阔
- 2021-07-28 08:21
什么是零点函数
最佳答案
- 五星知识达人网友:人類模型
- 2021-07-28 09:02
我们把函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点,即方程的根。
f(x)的零点就是方程f(x)=0的解。这样就为我们提供了一个通过函数性质确定方程的途径。函数的零点个数就决定了相应方程实数解的个数。
若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解。
一般结论:函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图像与x轴(直线x=0)焦点的横坐标,所以方程f(x)=0有实数根推出函数y=f(x)的图像与函数y=g(x)的图像与x轴有交点推出函数y=f(x)有零点。
更一般的结论:函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图像与函数y=g(x)的图像交点的横坐标,这个结论很有用。
函数零点就是当发f(x)=0是对应的函数值,需要注意的是零点是一个点,而不是一个值,它是二维平面上的一个独立的点。
f(x)的零点就是方程f(x)=0的解。这样就为我们提供了一个通过函数性质确定方程的途径。函数的零点个数就决定了相应方程实数解的个数。
若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解。
一般结论:函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图像与x轴(直线x=0)焦点的横坐标,所以方程f(x)=0有实数根推出函数y=f(x)的图像与函数y=g(x)的图像与x轴有交点推出函数y=f(x)有零点。
更一般的结论:函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图像与函数y=g(x)的图像交点的横坐标,这个结论很有用。
函数零点就是当发f(x)=0是对应的函数值,需要注意的是零点是一个点,而不是一个值,它是二维平面上的一个独立的点。
全部回答
- 1楼网友:深街酒徒
- 2021-07-28 09:46
就是:函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则ζ∈(a,b)内,
使得:f(ζ)=0
例如:f(a)=-1 f(b)=2
那么:连接f(a)=-1 f(b)=2,它在[a,b]内 至少有一个根为0.
即:连接f(a)=-1 f(b)=2 ,至少和x轴有一个交点。
- 2楼网友:玩世
- 2021-07-28 09:35
去百度搜索"什么是零点函数"
会有的O(∩_∩)O~
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯