关于二次函数的图象与解析式的关系的公式如题,最好就把所有函数的解析式图象关系都拿来~
答案:2 悬赏:40 手机版
解决时间 2021-02-21 14:16
- 提问者网友:绫月
- 2021-02-21 01:34
关于二次函数的图象与解析式的关系的公式如题,最好就把所有函数的解析式图象关系都拿来~
最佳答案
- 五星知识达人网友:掌灯师
- 2021-02-21 02:09
一般的或者普遍的结论是:把二次函数的一般式进行变换,得到标准二次函数,然后根据其中的参数来判断是属于哪类曲线.曲线的形状由圆锥的切割生成.1、把ax^2+by^2+cxy+dx+ey+f=0进行变换,其变过过程请参考中级数学物理方程的书籍.变换后的方程或曲线由Δ(为原方程参数的函数)是否大于,等于,小于零而分为椭,抛、双三类曲线,相应的二阶微分方程也是如此定义分类的.2.通过对圆锥的切割可以得到二次曲线,但是其解析表达式中有交叉项,即含有xy,这个项是旋转的结果,只要把解析式进行旋转变换就可得到我们常用的标准式.3.三类曲线从1中定义,而不是我们高中课本上的根据图形一目了然的定义.======以下答案可供参考======供参考答案1:自己看 在这1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax^2y=a(x-h)^2 y=a(x-h)^2+k y=ax^2+bx+c 顶点坐标 (0,0) (h,0) (h,k) (-b/2a,sqrt[4ac-b^2]/4a) 对 称 轴 x=0 x=h x=h x=-b/2a 当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到, 当h 当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象; 当h>0,k 当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象; 当h 因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a 3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a 4.抛物线y=ax^2+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点) 当△=0.图象与x轴只有一个交点; 当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a 5.抛物线y=ax^2+bx+c的最值:如果a>0(a 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
全部回答
- 1楼网友:洎扰庸人
- 2021-02-21 02:31
就是这个解释
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯