已知:(a+b-c)/c=(b+c-a)/a=(c+a-b)/b,a+b+c≠0.求证::(a+b)(b+c)(c+a)
答案:1 悬赏:60 手机版
解决时间 2021-07-30 07:14
- 提问者网友:你给我的爱
- 2021-07-29 21:35
已知:(a+b-c)/c=(b+c-a)/a=(c+a-b)/b,a+b+c≠0.求证::(a+b)(b+c)(c+a)/abc=8
最佳答案
- 五星知识达人网友:蓝房子
- 2021-07-29 23:06
由a/(b-c)+b/(c-a)+c/(a-b)=0得
[a/(b-c)+b/(c-a)+c/(a-b)][(1/(b-c)+1/(c-a)+1/(a-b)]=0
拆开得[a/(b-c)2+b/(c-a)2+c/(a-b)2]+(a+b)/[(b-c)(c-a)]+(b+c)/[(c-a)(a-b)]+(c+a)/[(a-b)(b-c)]=0
即[a/(b-c)2+b/(c-a)2+c/(a-b)2]+(a2-b2+b2-c2+c2-a2)/[(a-b)(b-c)(c-a)]=0(后半部分通分)
故a/(b-c)2+b/(c-a)2+c/(a-b)2=0
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯