永发信息网

已知函数f(x)满足f(logax)=a(x-1/x)/(a^2-1)(a>0,a≠1)

答案:3  悬赏:60  手机版
解决时间 2021-03-03 04:59
已知函数f(x)满足f(logaX)=a(x-1/x)/(a^2-1)(a>0,a≠1)
(1)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(1-m^2)<0,求实数m的取值范围
(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求实数a的取值范围
最佳答案
您是不是漏掉了几个问什么的。要不然,这道题,一般人都不知道往哪方面去想。
(1)。令logaX=t,x>0,所以t∈R.则x=a^t,带入得f(t)=a*(a^t-a^-t)/(a^2-1),将t换成x,得到表达式f(x)=a*(a^x-a^-x)/(a^2-1),x∈R。
然后考察它的奇偶性,单调性。
令x=-x,带入得f(-x)=a*(a^-x-a^x)/(a^2-1),它恰好等于-f(x).所以是奇函数。
然后看单调性。求导,f`(x)=a/(a^2-1)*(a^x*㏑a+a^-x*lna)=a/(a^2-1)*lna*(a^x+a^-x),讨论当0<a<1,导数大于0,a>1,还是大于0.所以函数是增函数。然后再来解第一问。
去掉f的办法是移向,利用奇偶性,单调性去掉符号。
首先注意定义域,这里是(-1,1),所以得有-1<1-m<1,且-1<1-m^<1.
然后移向,f(1-m)<-f(1-m^2)=f(m^2-1).又因为是增函数,所以1-m<m^2-1.解这三个关于m的范围,取交集,即得解:(如果没解错的话,应该是)0<m<1.
(2).f(x)-4<0,在区间(-∞,2)上恒成立,即f(x)<4恒成立。即f(x)的最大值小于4即可。f(x)增函数,令x=2带入方程,得a*(a^2-a^-2)/(a^2-1)<4.(注意,其实这里的x=2是取不到的,但可以用到不等式中,只要注意这个边界值是否可以取到即可。若可以取到,则有时候会写成≤某个值的情况。要注意)解这个不等式……a^2-a^-2,通分,得(a^4-1)/a^2=(a^2-1)*(a^2+1)/a^2,与下面的式子约掉一个(a^2-1),最后整理得a^2-4a+1<0,解得-√3+2<a<√3+2,然后与a>0且a≠1取交集,得(-√3+2,1)∪(1,√3+2)。
全部回答
满意回答中第一问有误,正确解法如下: 令log_a(x)=t,则x=a^t, 所以 f(t)=[a/(a^2-1)]·[a^t-a^(-t)] 所以 f(x)=[a/(a^2-1)]·[a^x-a^(-x)] 因为f(-x)=-f(x),故f(x)是r上的奇函数 当a>1时,f(x)是r上的增函数,0<a<1时,f(x)是r上的增函数。 即a>0且a≠1时, f(x)是r上的增函数。 由f(1-m)+f(1-m^2)<0,有f(1-m)=f(m^2-1), 所以,1-m<m^2-1① -1<1-m<1② -1<m^2-1<1③ 联立①②③得,m∈(1,√2) 另外,第(2)问中左右取闭区间,即a∈[2-√3, 1)∪(1, 2+√3]。
(1)令logaX=t,x>0, 则x=a^t, f(t)=a(a^t-a^-t)/(a^2-1), f(x)=a(a^x-a^-x)/(a^2-1), 再令x=-x, f(-x)=a(a^-x-a^x)/(a^2-1=-f(x). 所以f(x)是奇函数 f(x)求导=a/(a^2-1)(a^x㏑a+a^-xlna) =a/(a^2-1)*lna*(a^x+a^-x), 当0<a<1,导数大于0, 当a>1,导数大于0 所以,f(x)是增函数 -1<1-m<1,且-1<1-m^2<1. f(1-m)<-f(1-m^2)=f(m^2-1) 1-m<m^2-1. 所以,0<m<1.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
小学生家长意见怎样写?
皇后美容会馆我想知道这个在什么地方
按自然资源的性质分类,矿产资源是属于:A.
四川省内江市东兴区按2013年标准赔偿是不是违
成都郫县富士康科技集团在哪里地图
那您觉得做礼拜是守礼拜六还是礼拜天?
我寄愁心与明月,随风直到夜郎西是哪首诗
柴胡汤可以治感冒吗?
改名字能改变命运吗
有个男生老是喜欢保存我照片到电脑这是为什么
宝莱宠物酒店地址在哪,我要去那里办事
混凝土搅拌机每罐需加入干砂190kg,若砂子含
乡宁县第三中学这个地址在什么地方,我要处理
摄像机的雨罩是铁的好一些还是塑料的好一些呢
设函数f(x)=2x^3-3(a+1)x^2+6ax+8,其中,a∈R,
推荐资讯
绘画工具灯箱
古代支撑庙宇柱子的石头叫什么
砖庙村怎么去啊,有知道地址的么
旧岽桥这个地址在什么地方,我要处理点事
为啥小小村干部敢贪污赈灾款
深层搅拌法壁状加固时,相邻桩的施工时间间隔
升级win10后,怎么去掉备份和还原 windows 7
女生对穿一身黑色衣服男生有哪些看法?全黑
分析推理是化学学习和研究中常用的思维方法.
扇贝王烧烤地址有知道的么?有点事想过去
大连市建设工程交易中心旅顺分部地址有知道的
郑州东站到北站打车多少钱
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?