如图,在四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,H是EF的中点,求证:GH垂直EF
如图,在四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,H是EF的中点,求证:GH垂直EF
答案:1 悬赏:80 手机版
解决时间 2021-03-23 06:17
- 提问者网友:暮烟疏雨之际
- 2021-03-22 11:40
最佳答案
- 五星知识达人网友:十鸦
- 2021-03-22 12:53
证明:连接FG
因为E、G、F分别是AB、CD、AC的中点,则2EG=BC,2FG=AD
因为AD=BC
所以EG=FG
则三角形EFG是等腰三角形
因为H是EF的中点所以GH是三角形底边的中线
故GH垂直EF
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯