欧拉公式是如何推导的
答案:4 悬赏:20 手机版
解决时间 2021-12-23 09:17
- 提问者网友:且恨且铭记
- 2021-12-22 12:18
欧拉公式是如何推导的
最佳答案
- 五星知识达人网友:我住北渡口
- 2022-01-05 22:52
欧拉公式有4条
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)多面体
设v为顶点数,e为棱数,是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
等等
其实欧拉公式是有4个的,上面说的都是多面体的公式
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)多面体
设v为顶点数,e为棱数,是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
等等
其实欧拉公式是有4个的,上面说的都是多面体的公式
全部回答
- 1楼网友:低音帝王
- 2022-01-06 01:46
e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。e^ix=cosx+isinx的证明:因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……cos x=1-x^2/2!+x^4/4!-x^6/6!……sin x=x-x^3/3!+x^5/5!-x^7/7!……在e^x的展开式中把x换成±ix.(±i)^2=-1, (±i)^3=∓i, (±i)^4=1 ……e^±ix=1±ix/1!-x^2/2!∓ix^3/3!+x^4/4!……=(1-x^2/2!+……)±i(x-x^3/3!……)所以e^±ix=cosx±isinx将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.\叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:
e^iπ+1=0.这个也叫做欧拉公式
- 2楼网友:怙棘
- 2022-01-06 00:32
如果你真的想知道,最简单的办法是用离散数学来解决,在其中第四部分(图论)第17章有详细的介绍,有半页,那本书是高等教育出版社出版的(我们的课本来着)。如果想知道详情请咨询我
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯