这个题怎么做,详解一下
答案:1 悬赏:30 手机版
解决时间 2021-02-05 18:39
- 提问者网友:ミ烙印ゝ
- 2021-02-05 01:31
这个题怎么做,详解一下
最佳答案
- 五星知识达人网友:夜余生
- 2021-02-05 02:09
解答:
f(x)=sinwx-1/2*sin2wx
再求导
f`(x)=w*coswx-1/2*cos2wx*2w
=w*coswx-w*cos2wx
=w*(coswx-cos2wx)
求减区间,则令导数<0,即
w*(coswx-cos2wx)<0,又因为w>0,所以得
coswx 即coswx<2(coswx)^2-1,令coswx=t
得2t^2-t-1>0,得t<-1/2 或 t>1(舍掉)
即coswx<-1/2
当a=-1时,f(x)=lnx+x+2/x-1
f(x)导数=(x^2+x-2)/x^2
f(2)导数=1即曲线y=f(x)在点(2,f(2))处的切线斜率为1
又f(2)=ln2+2
所以曲线y=f(x)在点(2,f(2))处的切线方程为x-y+ln2=0
(2)
f(x)的导数=1/x-a-(1-a)/(x^2)=(-ax^2+x+a-1)/(x^2)
分母在x=0时无意义,在x≠0时恒大于零,
分子=-ax^2+x+a-1,以x=1/2为对称轴,最大值3/4a-1/2<0恒小于零
f(x)的导数在x=0时无意义,在x≠0时恒小于零,
所以f(x)单调递减
f(x)=sinwx-1/2*sin2wx
再求导
f`(x)=w*coswx-1/2*cos2wx*2w
=w*coswx-w*cos2wx
=w*(coswx-cos2wx)
求减区间,则令导数<0,即
w*(coswx-cos2wx)<0,又因为w>0,所以得
coswx
得2t^2-t-1>0,得t<-1/2 或 t>1(舍掉)
即coswx<-1/2
当a=-1时,f(x)=lnx+x+2/x-1
f(x)导数=(x^2+x-2)/x^2
f(2)导数=1即曲线y=f(x)在点(2,f(2))处的切线斜率为1
又f(2)=ln2+2
所以曲线y=f(x)在点(2,f(2))处的切线方程为x-y+ln2=0
(2)
f(x)的导数=1/x-a-(1-a)/(x^2)=(-ax^2+x+a-1)/(x^2)
分母在x=0时无意义,在x≠0时恒大于零,
分子=-ax^2+x+a-1,以x=1/2为对称轴,最大值3/4a-1/2<0恒小于零
f(x)的导数在x=0时无意义,在x≠0时恒小于零,
所以f(x)单调递减
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯