设P,Q都是3阶非零矩阵,为什么“PQ=0,所以,秩(P)+秩(Q)≤3”,什么定理?
设P,Q都是3阶非零矩阵,为什么“PQ=0,所以,秩(P)+秩(Q)≤3”,什么定理?
答案:1 悬赏:30 手机版
解决时间 2021-05-02 01:30
- 提问者网友:贪了杯
- 2021-05-01 13:27
最佳答案
- 五星知识达人网友:玩世
- 2021-05-01 14:50
这是一个一般的结论,没有名字的.其证明如下:
设R(p)=r.
因为PQ=0,所以Q的每一列都是Px=0的解向量.
所以Q的所有列都可以由Px=0的基础解系来表示,所以
Q的列秩(即Q的秩)小于或等于基础解系所含解向量的个数3-r,
所以 秩(P)+秩(Q)≤r+3-r=3.
更一般地:
设P,Q都是n阶非零矩阵,若PQ=0,则 秩(P)+秩(Q)≤n.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯