(1)若多项式(2x^2+ax-y+6)-(2bx^2-3x+5y-1)的值与字母x所取的值无关,试求多项式1/3a^3-2b^2-(1/4a^3-3b^2)的值。
(2)已知M=2x^2+3kx-2x+6,N=-x^2+kx+2,且3M+6N的值与x的值无关,求k的值。
(3)已知ax^4+bx^3+cx^2+dx+e=(x-2)^4.<1>求a+b+c+d+e的值。<2>试求a+c的值。
(1)若多项式(2x^2+ax-y+6)-(2bx^2-3x+5y-1)的值与字母x所取的值无关,试求多项式1/3a^3-2b^2-(1/4a^3-3b^2)的值。
(2)已知M=2x^2+3kx-2x+6,N=-x^2+kx+2,且3M+6N的值与x的值无关,求k的值。
(3)已知ax^4+bx^3+cx^2+dx+e=(x-2)^4.<1>求a+b+c+d+e的值。<2>试求a+c的值。
1:
(2x²+ax-y+6)-(2bx²-3x+5y-1)
=2x²+ax-y+6-2bx²+3x-5y+1
=(2-2b)x²+(a+3)x-6y+7
因为值与x无关
所以x,x²的系数都为0
所以2-2b=0,a+3=0
所以b=1,a=-3
1/3a³-2b²-(1/4a³-3b²)
=1/12a³+b²
=1/12×(-3)³+1²
=(-9/4)+1
=-5/4
2:
M=2x²+3kx-2x+6
N=-x²+kx+2
3M+6N
=3(2x²+3kx-2x+6)+6(-x²+kx+2)
=6x²+9kx-6x+18-6x²+6kx+12
=(15k-6)x+30
因为结果与x无关
所以x的系数为0
所以15k-6=0
所以k=6/15=0.4
3:
ax^4+bx^3+cx^2+dx+e=(x-2)^4
当x=1时
a+b+c+d+e=(1-2)^4=1①
当x=-1时
a-b+c-d+e=(-1-2)^4=81②
①+②得到:
2(a+c+e)=82
则a+c+e=41
当x=0时
e=(0-2)^4=16
则a+c=41-e=41-16=25
1.
(2x^2+ax-y+6)-(2bx^2-3x+5y-1) =2x^2+ax-y+6-2bx^2+3x-5y+1 =(2x^2-2bx^2)+(ax+3x)-6y+7 所以b=1 a=-3 1/3a^3-2b^2(1/4a^3-3b^2) =-16.5