给出集合A={-2,-1,,,,1,2,3}.已知a∈A,使得幂函数f(x)=xa为奇函数;指数函数g(x)=ax在区间(0,+∞)上为增函数.
(1)试写出所有符合条件的a,说明理由;
(2)判断f(x)在(0,+∞)的单调性,并证明;
(3)解方程:f[g(x)]=g[f(x)].
给出集合A={-2,-1,,,,1,2,3}.已知a∈A,使得幂函数f(x)=xa为奇函数;指数函数g(x)=ax在区间(0,+∞)上为增函数.(1)试写出所有符合条
答案:2 悬赏:60 手机版
解决时间 2021-01-03 22:10
- 提问者网友:咪咪
- 2021-01-03 17:42
最佳答案
- 五星知识达人网友:雾月
- 2021-01-22 06:53
解:(1)a=3.…1分
∵指数函数g(x)=ax在区间(0,+∞)上为增函数,
∴a>1,
∴a只可能为2或3.
而当a=2时,幂函数f(x)=x2为偶函数,
只有当a=3时,幂函数f(x)=x3为奇函数.
(只需简单说明理由即可,无需与
∵指数函数g(x)=ax在区间(0,+∞)上为增函数,
∴a>1,
∴a只可能为2或3.
而当a=2时,幂函数f(x)=x2为偶函数,
只有当a=3时,幂函数f(x)=x3为奇函数.
(只需简单说明理由即可,无需与
全部回答
- 1楼网友:山河有幸埋战骨
- 2021-01-22 08:28
谢谢回答!!!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯