费马大定理中,怎样证明n=3时,不能找到一组整数解
答案:3 悬赏:0 手机版
解决时间 2021-03-12 18:03
- 提问者网友:喧嚣尘世
- 2021-03-12 12:43
费马大定理中,怎样证明n=3时,不能找到一组整数解
最佳答案
- 五星知识达人网友:独行浪子会拥风
- 2021-03-12 13:29
用因式分解证明费尔马大定理(订正稿丙)(黄振东)
作者;黄振东,
单位:利川市“龙船调”编辑部,
摘要:设:x^n+y^n=z^n,可导出不成立的等式,x^n+y^n=/=z^n。
关键词:数幂,不成立,
Abstract: in this paper, using reduction to absurdity, set: x ^ p + y ^ ^ p = z p, using an incremental method, can't export equation established, x ^ 9 + y = / = z ^ ^ 9 p.
Key words; Prime, power,
1理;x^n+y^n=/=z^n,[(x,y=1,(x,z=1.(y,z)=1))
2证明:
2,1设:x^n+y^n=z^n,
2,1,1,n=4, x^4+y^4=z^4,(x^2)^2+(y^2)^2=(z^2)^2,(1)
(1)式不成立:毕氏三组数,无全是数幂的解,)x^4+y^4=/=z^4,
2,1,2n=p,
设:x^p+y^p=z^p,
2,1,2,1n=3,
设:x^3+y^3=z^3
2,1,2,1,1,
P=3,3卜xyz,
1定理;x^3+y^3=/=z^3,
2证明:
2,1,1设:x^3+y^3=z^3,
(x+y)[(x+y)^2-3xy]=z^3,
设:(x+y)=m3^3,(1)
[(x+y)^2-3xy]=n3^3,
z=m3n3,
2,1,2z^3-y^3=x^3,
(z-y)[(z-y)^2-3zy]=x^3,
设:(z-y)=m1^3,(2)
[(z-y)^2-3zy]=n1^3,
x=m1n31
2,1,3 z^3-x^3=y^3,
(z-x)[(z-x)^2-3zx]=y^3,
设:(z-x)=m2^3,(3)
[(z-x)^2-3zx]=n2^3,
y=m2n2,
2,2x^3+y^3=z^3.
x+y≡z(mod3),3l(x+y-z)
(x+y-z)=](x+y)-z],m3l(x+y-z)
(x+y-z)=[x-(z-y)].m1l(x+y-z)
(x+y-z)=[y-(z-x)],m2l(x+y-z)
(x+y-z)=3m1m2m3,(4)
2,3 x^3+y^3=z^3.
x^3+3xy(x+y)+y^3=z^3+3xy(x+y)
(x+y)^3-z^3=3xy(x+y)
(x+y-z)[. (x+y-z)^2+3(x+y)z]= 3xy(x+y)
3m1m2m3[(3m1m2m3)^2+3*(m3)^3*m3n3]=3m1n1*m2n2*m3^3,(5)
(5)式不等。左端只有一个m3因数,右端有3个m3因数。所以x^3+y^3=/=z^3.
2,4,3lxyz,设;3lx,或3ly,或3lz,且:x+y=9.则:z^3-x^3=y^3,
z^3-3zx(z-x)-x^3=y^3+-3zx(z-x)
(z-x)^3-y^3=-3zx(z-x)
(z-x-y)[. (z-x-y)^2+3(z-x)y]= -3zx(z-x)3xy
3m1m2m3[(3m1m2m3)^2+3*(m2)^3*m2n2]=3m3n3*m1n1*m2^3,(6) (5)式不等。左端只有一个m2因数,右端有3个m2因数。所以x^3+y^3=/=z^3.
2,5同理可证:n=p, x^p+y^p=/=z^p.
证毕!
(x+y-z)=](x+y)-z]=m3(m3^2-n3)
(m3^2-n3)=3m1m2.(5),
(2)+(3),2z-(x+y)=m1^3+m2^3
m3(2n3-m3^2)=(m1+m2)[ (m1+m2)^2-3m1m2]
设:m3=(m1+m2),
x+y=m3^3,m1n1+m2n2+m1^3,
n1=n2=m1^2,(6)
(6)式不成立[(x,y)=(x.z0=(y,z)=1]
2,2x^3+y^3=/=z^3
2,2同理可证:x^p+y^p=/=z^p.
2,3x^n+y^n=/=z^n,证毕!
作者;黄振东,
单位:利川市“龙船调”编辑部,
摘要:设:x^n+y^n=z^n,可导出不成立的等式,x^n+y^n=/=z^n。
关键词:数幂,不成立,
Abstract: in this paper, using reduction to absurdity, set: x ^ p + y ^ ^ p = z p, using an incremental method, can't export equation established, x ^ 9 + y = / = z ^ ^ 9 p.
Key words; Prime, power,
1理;x^n+y^n=/=z^n,[(x,y=1,(x,z=1.(y,z)=1))
2证明:
2,1设:x^n+y^n=z^n,
2,1,1,n=4, x^4+y^4=z^4,(x^2)^2+(y^2)^2=(z^2)^2,(1)
(1)式不成立:毕氏三组数,无全是数幂的解,)x^4+y^4=/=z^4,
2,1,2n=p,
设:x^p+y^p=z^p,
2,1,2,1n=3,
设:x^3+y^3=z^3
2,1,2,1,1,
P=3,3卜xyz,
1定理;x^3+y^3=/=z^3,
2证明:
2,1,1设:x^3+y^3=z^3,
(x+y)[(x+y)^2-3xy]=z^3,
设:(x+y)=m3^3,(1)
[(x+y)^2-3xy]=n3^3,
z=m3n3,
2,1,2z^3-y^3=x^3,
(z-y)[(z-y)^2-3zy]=x^3,
设:(z-y)=m1^3,(2)
[(z-y)^2-3zy]=n1^3,
x=m1n31
2,1,3 z^3-x^3=y^3,
(z-x)[(z-x)^2-3zx]=y^3,
设:(z-x)=m2^3,(3)
[(z-x)^2-3zx]=n2^3,
y=m2n2,
2,2x^3+y^3=z^3.
x+y≡z(mod3),3l(x+y-z)
(x+y-z)=](x+y)-z],m3l(x+y-z)
(x+y-z)=[x-(z-y)].m1l(x+y-z)
(x+y-z)=[y-(z-x)],m2l(x+y-z)
(x+y-z)=3m1m2m3,(4)
2,3 x^3+y^3=z^3.
x^3+3xy(x+y)+y^3=z^3+3xy(x+y)
(x+y)^3-z^3=3xy(x+y)
(x+y-z)[. (x+y-z)^2+3(x+y)z]= 3xy(x+y)
3m1m2m3[(3m1m2m3)^2+3*(m3)^3*m3n3]=3m1n1*m2n2*m3^3,(5)
(5)式不等。左端只有一个m3因数,右端有3个m3因数。所以x^3+y^3=/=z^3.
2,4,3lxyz,设;3lx,或3ly,或3lz,且:x+y=9.则:z^3-x^3=y^3,
z^3-3zx(z-x)-x^3=y^3+-3zx(z-x)
(z-x)^3-y^3=-3zx(z-x)
(z-x-y)[. (z-x-y)^2+3(z-x)y]= -3zx(z-x)3xy
3m1m2m3[(3m1m2m3)^2+3*(m2)^3*m2n2]=3m3n3*m1n1*m2^3,(6) (5)式不等。左端只有一个m2因数,右端有3个m2因数。所以x^3+y^3=/=z^3.
2,5同理可证:n=p, x^p+y^p=/=z^p.
证毕!
(x+y-z)=](x+y)-z]=m3(m3^2-n3)
(m3^2-n3)=3m1m2.(5),
(2)+(3),2z-(x+y)=m1^3+m2^3
m3(2n3-m3^2)=(m1+m2)[ (m1+m2)^2-3m1m2]
设:m3=(m1+m2),
x+y=m3^3,m1n1+m2n2+m1^3,
n1=n2=m1^2,(6)
(6)式不成立[(x,y)=(x.z0=(y,z)=1]
2,2x^3+y^3=/=z^3
2,2同理可证:x^p+y^p=/=z^p.
2,3x^n+y^n=/=z^n,证毕!
全部回答
- 1楼网友:酒安江南
- 2021-03-12 14:39
你想看初等证明还是非初等证明?
还有,这种东西放百度知道上问,你怎么能不加悬赏分呢?
还有,这种东西放百度知道上问,你怎么能不加悬赏分呢?
- 2楼网友:蕴藏春秋
- 2021-03-12 14:15
n=5和n=7的问题也是你提的吧。。。。。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯