一个周长为300米的环形跑道,甲每分钟走100米,乙每分钟走70米,丙每分钟走50米,甲乙丙三人同时
答案:2 悬赏:30 手机版
解决时间 2021-02-18 21:14
- 提问者网友:王者佥
- 2021-02-18 16:24
一个周长为300米的环形跑道,甲每分钟走100米,乙每分钟走70米,丙每分钟走50米,甲乙丙三人同时
最佳答案
- 五星知识达人网友:酒者煙囻
- 2021-02-18 16:42
甲追及乙的时间:300÷(100-70)=10分钟甲追及丙的时间:300÷(100-50)=6分钟乙追及丙的时间:300÷(70-50)=15分钟也就是甲和乙要再次相遇需要10分钟,也就是甲和丙要再次相遇需要6分钟,也就是乙和丙要再次相遇需要15分钟,三个人要一起相遇,需要的时间就是他们两两相遇的时间的最小公倍数,也就是10分钟,6分钟,15分钟的最小公倍数.10、6和15的最小公倍数是30也就是30分钟后三个人可以再次相遇.======以下答案可供参考======供参考答案1:mod(100t,300)=mod(70t,300)=mod(50t,300)100,70,50最小公倍数700 700/100=7, 700/70=10 ,700/14 7,10,14最小公倍数70 70分钟后他们又在同一点供参考答案2:30分钟。设t分钟后在同一点。因为在同一点,且甲比乙快,所以甲走的路程比乙多300的整数倍。100t-70t=300n(n=1,2,3,……) t=10n同理,甲走的路程也比丙多300的整数倍。100t-50t=300m(m=1,2,3,……) t=6m且m>n t既是10的倍数,又是6的倍数,10和6的最小公倍数是30,所以每过30分钟他们就相遇一次。则30分钟后他们又在同一点。供参考答案3:设:X=需要时间,A=甲-乙差的圈数,B=甲-丙差的圈数,C=乙-丙差的圈数,X*100-X*70=A*300X*100-X*50=B*300X*70-X*50=C*300-----------------------------------X*30=A*300X*50=B*300X*20=C*300------------------------------A=(X*30)/300B=(X*50)/300C=(X*20)/300-------------------------A=(X*3)/30B=(X*5)/30C=(X*2)/30-----------------------要使A、B、C有最小整数,那么可以得到X为2、3、5的最小公倍数:X=30
全部回答
- 1楼网友:往事埋风中
- 2021-02-18 17:34
收益了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯