当p在bc上移动时,pg经过定点,并指出定点在什么位置,求pg长度的最小值
答案:1 悬赏:10 手机版
解决时间 2021-04-28 01:26
- 提问者网友:难遇难求
- 2021-04-27 05:12
当p在bc上移动时,pg经过定点,并指出定点在什么位置,求pg长度的最小值
最佳答案
- 五星知识达人网友:上分大魔王
- 2021-04-27 06:21
解:
设前6分钟的函数关系式为y=kx+b (0 其过(0,18)(3,15)
代入y=kx+b中
18=k
15=3k+b
k=18,b=-1
y=-x+18
当x=6时,y=12
6分钟以后的函数关系式为y=k1x+b1
其过(8,8)(6,12)
代入y=k1x+b中
12=6k1+b1
8=8k1+b1
k1=-2,b=24
6分钟以后的函数关系式为y=-2x+24
当y=0时,x=12(分钟)
17时+12分钟
∵移动后的函数对称轴x=4
∴点A (-2,4),点B′(6,0)及x=4可求出点C(4,8/9)
在△ABC中,AB=5,AC=√[(4-8/9)2+(-3-4)2]=7√97/9
在△B′CD中,B′C=√[(8/9-0)2+(4-6)2]=2√97/9
∵由(2)知四边形AA'B'B为菱形
∴AB=BB′
∴∠BAC=∠CB′B
∴要使△ABC∽△B′CD,只有∠B′DC=∠ABC或∠B′DC=∠ACB
当∠B′DC=∠ABC时,B′D/AB=B′C/AC
得B′D=(B′C/AC)×AB
=[(2√97/9)/(7√97/9)]×5
=10/7
OD=OB′-B′D=6-(10/7)=32/7,点D(32/7,0)
当∠B′CD=∠ACB时,B′D/AC=B′C/AB
得B′D=(B′C/AB)×AC
=[(2√97/9)/5]×(7√97/9)
=1358/405
OD=OB′-B′D=6-(1358/405)=1072/405,点D(1072/405,0)
因此点D坐标为(32/7,0)或(1072/405,0)
设前6分钟的函数关系式为y=kx+b (0
代入y=kx+b中
18=k
15=3k+b
k=18,b=-1
y=-x+18
当x=6时,y=12
6分钟以后的函数关系式为y=k1x+b1
其过(8,8)(6,12)
代入y=k1x+b中
12=6k1+b1
8=8k1+b1
k1=-2,b=24
6分钟以后的函数关系式为y=-2x+24
当y=0时,x=12(分钟)
17时+12分钟
∵移动后的函数对称轴x=4
∴点A (-2,4),点B′(6,0)及x=4可求出点C(4,8/9)
在△ABC中,AB=5,AC=√[(4-8/9)2+(-3-4)2]=7√97/9
在△B′CD中,B′C=√[(8/9-0)2+(4-6)2]=2√97/9
∵由(2)知四边形AA'B'B为菱形
∴AB=BB′
∴∠BAC=∠CB′B
∴要使△ABC∽△B′CD,只有∠B′DC=∠ABC或∠B′DC=∠ACB
当∠B′DC=∠ABC时,B′D/AB=B′C/AC
得B′D=(B′C/AC)×AB
=[(2√97/9)/(7√97/9)]×5
=10/7
OD=OB′-B′D=6-(10/7)=32/7,点D(32/7,0)
当∠B′CD=∠ACB时,B′D/AC=B′C/AB
得B′D=(B′C/AB)×AC
=[(2√97/9)/5]×(7√97/9)
=1358/405
OD=OB′-B′D=6-(1358/405)=1072/405,点D(1072/405,0)
因此点D坐标为(32/7,0)或(1072/405,0)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯