如图在三角形ABC中,角B=60度,AD平分角BAC,CE平分角ACB,AD与CE相交于P,求AC=AE+CD
答案:1 悬赏:20 手机版
解决时间 2021-07-26 05:44
- 提问者网友:伴风望海
- 2021-07-25 15:10
如图在三角形ABC中,角B=60度,AD平分角BAC,CE平分角ACB,AD与CE相交于P,求AC=AE+CD
最佳答案
- 五星知识达人网友:duile
- 2021-07-25 16:07
证明:【此题主要是证明两角平分线夹角60º】
设AD,CE相交于O,在AC上截取AF=AE,连接OF
∵∠ABC=60º
∴∠BAC+∠ACB=120º
∵AD平分∠BAC
∴∠EAO=∠FAO=½∠BAC
又∵AE=AF,AO=AO
∴⊿AEO≌⊿AFO(SAS)
∴∠AOE=∠AOF
∵CE平分∠ACB
∴∠FCO=∠DCO=½∠ACB
∴∠COD=∠FAO+∠FCO=½∠BAC+½∠ACB=60º
∴∠AOE=∠AOF=60º
∴∠COF=180º-∠COD-∠AOF=60º
∴∠COD=∠COF
又∵CO=CO
∴⊿COD≌⊿COF(ASA)
∴CD=CF
∴AC=AF+CF=AE+CD
设AD,CE相交于O,在AC上截取AF=AE,连接OF
∵∠ABC=60º
∴∠BAC+∠ACB=120º
∵AD平分∠BAC
∴∠EAO=∠FAO=½∠BAC
又∵AE=AF,AO=AO
∴⊿AEO≌⊿AFO(SAS)
∴∠AOE=∠AOF
∵CE平分∠ACB
∴∠FCO=∠DCO=½∠ACB
∴∠COD=∠FAO+∠FCO=½∠BAC+½∠ACB=60º
∴∠AOE=∠AOF=60º
∴∠COF=180º-∠COD-∠AOF=60º
∴∠COD=∠COF
又∵CO=CO
∴⊿COD≌⊿COF(ASA)
∴CD=CF
∴AC=AF+CF=AE+CD
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯