初三数学怎样用配方法求最大值和最小值
答案:1 悬赏:50 手机版
解决时间 2021-12-02 05:42
- 提问者网友:容嬷嬷拿针来
- 2021-12-01 15:14
初三数学怎样用配方法求最大值和最小值
最佳答案
- 五星知识达人网友:山有枢
- 2020-03-29 06:50
(1)首先要有二次函数的一般式y=ax²+bx+c(a≠0),如果没有,则要先列出原始解析式,并整理得到二次函数的一般式y=ax²+bx+c(a≠0);
(2)通过“配方法”将二次函数的一般式y=ax²+bx+c(a≠0)变成顶点式y=a(x-h)²+k;
(3)从顶点式y=a(x-h)²+k中得到产生最值的条件和最值:当x=h时,y最大或最小=k。
例如:
y=(2+x)(100-10x)【原始解析式】
=200-20x+100x-10x²
=-10x²+80x+200【整理成一般式y=ax²+bx+c(a≠0)】
=-10(x²-8x)+200
=-10(x²-8x+4²-4²)+200
=-10【(x-4)²-4²】+200
=-10(x-4)²+160+200
=-10(x-4)²+360【配方法变成顶点式y=a(x-h)²+k】
则:当x=4时,y最大=360。【得到产生最值的条件“x=h”和最值“y最大或最小=k”】
(2)通过“配方法”将二次函数的一般式y=ax²+bx+c(a≠0)变成顶点式y=a(x-h)²+k;
(3)从顶点式y=a(x-h)²+k中得到产生最值的条件和最值:当x=h时,y最大或最小=k。
例如:
y=(2+x)(100-10x)【原始解析式】
=200-20x+100x-10x²
=-10x²+80x+200【整理成一般式y=ax²+bx+c(a≠0)】
=-10(x²-8x)+200
=-10(x²-8x+4²-4²)+200
=-10【(x-4)²-4²】+200
=-10(x-4)²+160+200
=-10(x-4)²+360【配方法变成顶点式y=a(x-h)²+k】
则:当x=4时,y最大=360。【得到产生最值的条件“x=h”和最值“y最大或最小=k”】
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯