定义在R上奇函数,f(x)对任意x∈R都有f(x+1)=f(3-x),若f(1)=-2,则2012f(2012)-2013f(2013)=A.-4026B.4026C
答案:2 悬赏:0 手机版
解决时间 2021-01-01 23:25
- 提问者网友:姑娘长的好罪过
- 2021-01-01 17:51
定义在R上奇函数,f(x)对任意x∈R都有f(x+1)=f(3-x),若f(1)=-2,则2012f(2012)-2013f(2013)=A.-4026B.4026C.-4024D.4024
最佳答案
- 五星知识达人网友:不甚了了
- 2021-01-01 18:09
A解析分析:由条件f(x+1)=f(3-x),可得f(x)=f(4-x),f(-x)=f(4+x).再由函数f(x)为奇函数,可得f(-x)=-f(x).综合可得-f(x)=f(x+4),可得f(x)=f(x+8),故函数f(x)的周期为8.利用周期性求得f(2012)和f(2013)的值,即可求得2012f(2012)-2013f(2013)的值.解答:由于函数f(x)对任意x∈R都有f(x+1)=f(3-x),∴f(x)=f(4-x),∴f(-x)=f(4+x).
再由函数f(x)为奇函数,可得f(-x)=-f(x),∴-f(x)=f(x+4),∴f(x)=f(x+8),
故函数f(x)的周期为8.
∴f(2012)=f(8×251+4)=f(4)=f(4-4)=f(0)=0,
f(2013)=f(251×8+5)=f(5)=f(4-5)=f(-1)=-f(10=2,
2012f(2012)-2013f(2013)=0-2013×2=-4026,
故选A.点评:本题主要考查函数的奇偶性、周期性的应用,求函数的值,属于基础题.
再由函数f(x)为奇函数,可得f(-x)=-f(x),∴-f(x)=f(x+4),∴f(x)=f(x+8),
故函数f(x)的周期为8.
∴f(2012)=f(8×251+4)=f(4)=f(4-4)=f(0)=0,
f(2013)=f(251×8+5)=f(5)=f(4-5)=f(-1)=-f(10=2,
2012f(2012)-2013f(2013)=0-2013×2=-4026,
故选A.点评:本题主要考查函数的奇偶性、周期性的应用,求函数的值,属于基础题.
全部回答
- 1楼网友:撞了怀
- 2021-01-01 19:46
感谢回答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯