矩阵AB=0 ,行列式AB=0
答案:2 悬赏:70 手机版
解决时间 2021-02-23 08:25
- 提问者网友:浪荡绅士
- 2021-02-23 03:04
矩阵AB=0 ,行列式AB=0
最佳答案
- 五星知识达人网友:一袍清酒付
- 2021-02-23 04:39
不是矩阵和行列式是两个概念行列式是值和代数式矩阵是数量关系表======以下答案可供参考======供参考答案1:这个不对吧。。。应该是行列式AB=0 可以推出A的行列式或B的行列式为0供参考答案2:因为对于n阶矩阵,有|A|*|B|=|AB|供参考答案3:是行列式有一条性质 IAIIBI=IABI 如果你知道的话就简单啦矩阵AB=0,两边取行列式得 IABI=0由上面性质知IABI=IAIIBI=0供参考答案4:首先讨论一个矩阵X的行列式的话X必须是方阵只有X为方阵是才有行列式矩阵AB=0它是零矩阵eg:AB=0=(0 0) 0 0行列式 |AB| 当然等于零呀但是行列式 |AB| = 0,矩阵AB不一定为零eg:AB=(0 0) 0 1 行列式 |AB| = 0简言之,矩阵C=0是行列式 |C| =0的充分不必要条件BTW,仅仅说如果 |AB| = 0,则 |A|=0 or |B|=0,是不严谨的如开篇所说,A、B都是方阵的时候,命题才成立,如果说A为n*m矩阵,B为m*n矩阵,就算 |AB| = 0,讨论 |A| 和|B| 是没有意义的另外如二楼所说A、B为同阶方阵时,|AB| = |A| * |B| ①就不难理解A、B为同阶方阵时,如果 |AB| = 0,则 |A|=0 or |B|=0至于等式①的证明比较难打,基本思路就是矩阵乘法可以看作是做一系列初等变换如A*B,可以看作是A按照B做一系列初等变换至于初等(行、列)变化有三种可以分别检验A做一次初等变换,行列式不变,一次不变,一系列初等变换当然不变如此可以得出证明需要详细证明可以追问一下
全部回答
- 1楼网友:千杯敬自由
- 2021-02-23 05:11
对的,就是这个意思
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯