若自然数n+3与n+7都是质数,求n除以6的余数
答案:1 悬赏:40 手机版
解决时间 2021-11-13 08:22
- 提问者网友:火车头
- 2021-11-12 15:56
若自然数n+3与n+7都是质数,求n除以6的余数
最佳答案
- 五星知识达人网友:走死在岁月里
- 2021-11-12 17:15
不妨将n分成六类,n=6k,n=6k+1,…,n=6k+5,然后讨论.
当n=6k时,
n+3=6k+3=3(2k+1)与n+3为质数矛盾;
当n=6k+1时,
n+3=6k+4=2(3k+2)与n+3为质数矛盾;
当n=6k+2时,
n+7=6k+9=3(2k+3)与n+7为质数矛盾;
当n=6k+3时,
n+3=6k+6=6(k+1)与n+3为质数矛盾;
当n=6k+5时,
n+7=6k+12=6(k+2)与n+7为质数矛盾.
所以只有n=6k+4,即n除以6的余数为4.
故答案为:4.
当n=6k时,
n+3=6k+3=3(2k+1)与n+3为质数矛盾;
当n=6k+1时,
n+3=6k+4=2(3k+2)与n+3为质数矛盾;
当n=6k+2时,
n+7=6k+9=3(2k+3)与n+7为质数矛盾;
当n=6k+3时,
n+3=6k+6=6(k+1)与n+3为质数矛盾;
当n=6k+5时,
n+7=6k+12=6(k+2)与n+7为质数矛盾.
所以只有n=6k+4,即n除以6的余数为4.
故答案为:4.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯