永发信息网

怎么处理对数整体平方问题

答案:1  悬赏:80  手机版
解决时间 2021-02-15 21:36
怎么处理对数整体平方问题
最佳答案
苏格兰数学家纳皮尔,在研究天文学的过程中,为了简化其中的计算而发明了对数.16世纪前半叶,欧洲人热衷于地理探险和海洋贸易,需要更为准确的天文知识,而天文学的研究中,需要大量烦琐的计算,特别是三角函数的连乘,天文学家们苦不堪言。德国数学家约翰·维尔纳首先推出了三角函数的积化和差公式,即sinα·sinβ=[cos(α-β)-cos(α+β)]/2 ,cosα·cosβ=[cos(α-β)+cos(α+β)]/2 .大大简化了三角函数连乘的计算。比如,计算sin67°34'×sin9°3',可以从三角函数表查出sin67°34'=0.92432418,sin9°3'=0.15729632。但随后的乘法的计算十分烦琐,且容易出错。(请你不用计算器,手算一下0.92432418×0.15729632=?,记住还要验算一遍,以保证计算正确哦!)用维尔纳的三角函数积化和差公式,计算就大大简便了:sin67°34'×sin9°3'=cos(67°34'-9°3')-cos(67°34'+9°3')=[cos(58°31')-cos(76°37')]/2=[0.52225052-0.23146492]/2=0.14539280这个公式还可以用于把任何二个数的乘法计算转为加减法计算,方法如下:若求小于1的二个数a与b的乘积可以先由反三角函数表查得使a=sinα=a ,sinβ=b的α与β,然后计算(α-β)和(α+β),再由三角函数表查得cos(α-β)与cos(α+β) ,最后应用上面的公式求出它们的一半,就得所要求的数。由于大于1的数可用小于1的数乘上10n 表示,因此上面的两个公式实际上对于任意两个数都是适宜的。但这样做同样太繁杂了,况且还不能直接应用于除法、乘方和开方,因此,寻找更好的计算迫在眉睫。2、对数产生的前奏请你观察下面两个数列,并找出规律:1, 2, 4, 8,16,32,64,128,256,512,1024,2048, 4096,8192,16384⋯⋯0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14⋯⋯德国数学家Stifel (1487~1567)在观察上述两个数列时,称上排的数为 “原数”, 下排的数为“代表数” (德文Exponent) , Stifel发现,上一排数之间的乘、除运算结果与下一排数之间的加、减运算结果有一种对应关系。Stifel指出:“欲求上边任两数的积(商),只要先求出其下边代表数的和(差),然后再把这个和(差)对向上边的一个原数,则此原数即为所求之积(商)。”比如,计算16×1024,只要计算16的“代表数” 4、1024的“代表数” 10之和4+10=14,再查出与“代表数” 14相对应的“原数” 16384,就得到16×1024的乘积。实际上, Stifel已经掌握了对数运算法则,因为Stifel所谓的“代表数”,本质上是“原数”以2为底的对数。说明:上一排原数可写为以2为底的指数函数,则数列对为:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 210, 211, 212, 213 214 ⋯⋯ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 14 ⋯⋯ 则16×128实际上就是24×27=24+7=211=2048。此法可推广到任何二个数的乘除运算。比如计算17951235×0.08304115,设17951235=aX, 0.08304115=aY,则17951235×0.08304115=aX ×aY=aX+Y。这里x是17951235的(以a为底的)对数,y是0.08304115的(以a为底的)对数。底a是可以任意指定的,我们指定a=10,则只要查表得到这二个数的常用对数(以10为底的对数称为常用对数) x=lg 17951235=7.2540943323和y=lg0.08304115=-1.0807066451,计算x+y=6.1733876872,再查表得6.1733876872的(以10为底的)指数函数,106.1733876872=1490691.1983就得到了17951235的乘积。这就是后来的“对数简化运算”的方法。但由于当时没有分数指数的概念,人们还完全想不到这样的原理。Stifel尝试做任何两个数乘除时,遇到用数列不能解决的情况,他感到束手无策,他说:“这个问题太狭窄了,所以不值得研究”,只好“鸣金收兵”。 3、对数的发明对数的概念,首先是由苏格兰数学家John Napier(纳皮尔,1550~1617)提出的。那时候天文学是热门学科。可是由于数学的局限性,天文学家不得不花费很大精力去计算那些繁杂的“天文数字”,浪费了若干年甚至毕生的宝贵时间。Napier也是一位天文爱好者,他感到,“没有什么会比数学的演算更加令人烦恼……诸如一些大数的乘、除、平方、立方、开方……因此我开始考虑……怎样才能排除这些障碍。”经20年潜心研究大数的计算技术,他终于独立发明了对数,并于1614年出版的名著《奇妙的对数表的描述》("Mirifici logarithmorum canonis descriptio"),中阐明了对数原理,后人称为纳皮尔对数(NaplogX)。这让他在数学史上被重重地记上一笔。1616年Briggs(亨利·布里格斯,1561–1630)去拜访Napier,建议将对数改良一下以10为基底的对数表最为方便,这也就是后来常用的对数了。可惜Napier隔年于1617年春天去世,后来就由Briggs以毕生精力继承纳皮尔的未竟事业,他于1619年发表了《奇妙对数规则的结构》,于书中详细阐述了对数计算和造对数表的方法,1624年出版了《对数算术》一书,公布了以10为底的14位对数表,并称以10为底的对数为常用对数。对数表这一惊人发明很快传遍了欧洲大陆。开普勒利用对数表简化了行星轨道的复杂计算。伽利略发出了豪言壮语:“给我时间、空间和对数,我可以创造出一个宇宙来。”数学家拉普拉斯说:“对数用缩短计算的时间来使天文学家的寿命加倍”。对数表曾在几个世纪内为数学家、会计师、航海家和科学家广泛使用。今天,随着计算机的迅猛发展,对数表、计算尺就像过时的法律一样被废弃了,但对数与指数本身已成为数学的精髓部分,也是每一个中学生必学的内容。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
俾斯麦级战列舰和其他同时期战列舰单挑胜率有
一套全自动充绒机全部配齐大概需要多少钱?
玖诚领域怎么去啊,有知道地址的么
华为原装数据线突然充不上电了怎么办
保定现在驾本科目二好过吗?
家住在郴州解放路小学升初中划片在哪个学校就
淇滨区鹤壁周记刀削面这个地址在什么地方,我
我重装了XP SP3的系统,但USB不能显示
下面是两个并发执行的进程p1,p2.它们能正确
为什么只能用八进制或者十六进制而不能用十进
三星和海尔电视机那个质量好,性价比高
庭嘉食品经销部地址在什么地方,想过去办事
沁阳市焦作起点网络会所这个地址在什么地方,
微信怎么加我的瓶子里的人为好友
说某男生是某女生的外挂是什么意思??
推荐资讯
颖儿减肥前后对比照 颖儿减肥方法 颖儿怎么减
中山农商存折能在微信里添加银行卡吗?
帮闺密写给她喜欢的人的告白信
上蔡县驻马店逍遥金汤胡辣汤这个地址怎么能查
我儿子考取军校,有安抚金,优待金没?咋领取
这样子能求导吗,如图
君山区岳阳蔡记家常菜馆这个地址怎么能查询到
南宁江南客运站没注意闯红灯了,现在那里罚吗
CAD软件如何使用?
北京市国土局平谷分局我想知道这个在什么地方
是不是公共基础资料和专业资料是一本?教育类
赤壁市咸宁丰圆宾馆在什么地方啊,我要过去处
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?