解答题已知全集为R,集合A={x|x<a-1},B={x|x>a+2},.若?R(A∪
答案:2 悬赏:0 手机版
解决时间 2021-01-23 09:37
- 提问者网友:火车头
- 2021-01-23 06:14
解答题
已知全集为R,集合A={x|x<a-1},B={x|x>a+2},.若?R(A∪B)∪C=C,求实数a的取值范围.
最佳答案
- 五星知识达人网友:醉吻情书
- 2021-01-23 06:50
解:因为集合A={x|x<a-1},B={x|x>a+2},
所以A∪B={x|x<a-1或x>a+2},
所以?R(A∪B)={x|a-1≤x≤a+2}.
因为?R(A∪B)∪C=C,
所以?R(A∪B)?C.
由题意可得:C={x|x>4或x≤1},
所以a+2≤1或a-1>4,即a≤-1或a>5.
所以实数a的取值范围为(-∞,-1]∪(5,+∞).解析分析:由题意可得:A∪B={x|x<a-1或x>a+2},即可得到?R(A∪B)={x|a-1≤x≤a+2},结合题意可得:?R(A∪B)?C,再求出集合C,进而利用数轴表示?R(A∪B)与C的关系,即可求出a的取值范围.点评:本题主要考查集合的交集与补集运算,以及集合之间的包含关系,集合间的交、并、补运算是高考中的常考内容,一般以选择题或者填空题的形式出现.
所以A∪B={x|x<a-1或x>a+2},
所以?R(A∪B)={x|a-1≤x≤a+2}.
因为?R(A∪B)∪C=C,
所以?R(A∪B)?C.
由题意可得:C={x|x>4或x≤1},
所以a+2≤1或a-1>4,即a≤-1或a>5.
所以实数a的取值范围为(-∞,-1]∪(5,+∞).解析分析:由题意可得:A∪B={x|x<a-1或x>a+2},即可得到?R(A∪B)={x|a-1≤x≤a+2},结合题意可得:?R(A∪B)?C,再求出集合C,进而利用数轴表示?R(A∪B)与C的关系,即可求出a的取值范围.点评:本题主要考查集合的交集与补集运算,以及集合之间的包含关系,集合间的交、并、补运算是高考中的常考内容,一般以选择题或者填空题的形式出现.
全部回答
- 1楼网友:山君与见山
- 2021-01-23 08:25
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |