数学史上的三次危机及如何化解
答案:2 悬赏:70 手机版
解决时间 2021-02-03 19:02
- 提问者网友:原来太熟悉了会陌生
- 2021-02-03 07:57
数学史上的三次危机及如何化解
最佳答案
- 五星知识达人网友:白昼之月
- 2021-02-03 09:33
第一次数学危机
历史背景
毕达哥拉斯(约公元前572年——公元前492年)是一位古希腊的数学家及哲学家,他曾有一句名言「凡物皆数」,意思是万物的本原是数,数的规律统治万物。不过要注意的是,在那个年代,他们相信一切数字皆可以表达为整数或整数之比——分数,简单而言,他们所认识的只是「有理数」。
有趣的有理数
当时的人只有「有理数」的观念是绝不奇怪的。对于整数,在数在线我们可以知道是一点点分散的,而且点与点之间的距离是一,那就是说,整数不能完全填满整条数线,但有理数则不同了,我们发现任何两个有理数之间,必定有另一个有理数存在,例如:1与2之间有1/2,1与1/2之间有1/4等,因此令人很容易以为「有理数」可以完全填满整条数线,「有理数」就是等于一切数,可惜这个想法是错的,因为……
勾股定理(毕氏铁拳)
伟大的时刻来临了,毕达哥拉斯发现了现时众所周知的勾股定理(其实中国于公元前一千一百年已有此定理),从这个定理中,毕达哥拉斯发现了一件不可思议的事,就是腰长为1的等腰直角三角形的斜边长度,竟然是一个无法写成为有理数的数。亦即是说有理数并非一切数,存在有理数以外的数,有理数不可以完全填满整条数线,他们心中的信念完完全全被破坏了,他们所恃和所自豪的信念完全被粉碎。在当时的数学界来说,是一个极大的震撼,也是历史上的「第一次数学危机」。
新的一页
原来「第一次数学危机」是「无理数」的发现,不过它还说出了「有理数」的不完备性,亦即有理数不可以完全填满整条数线,在有理数之间还有「罅隙」,无疑这些都是可被证明的事实,是不能否定的。面对着事实,数学家展开广阔的胸襟,把「无理数」引入数学的大家庭,令数学更丰富更完备,加添了无理数,数线终于被填满了。
三次数学危机发展及解决办法
www.qsdfz.edu.cn 2010年2月22日 来源:信息中心 作者:刘伟 浏览次数:538 【字体:大 中 小】
第一次数学危机
历史背景
毕达哥拉斯(约公元前572年——公元前492年)是一位古希腊的数学家及哲学家,他曾有一句名言「凡物皆数」,意思是万物的本原是数,数的规律统治万物。不过要注意的是,在那个年代,他们相信一切数字皆可以表达为整数或整数之比——分数,简单而言,他们所认识的只是「有理数」。
有趣的有理数
当时的人只有「有理数」的观念是绝不奇怪的。对于整数,在数在线我们可以知道是一点点分散的,而且点与点之间的距离是一,那就是说,整数不能完全填满整条数线,但有理数则不同了,我们发现任何两个有理数之间,必定有另一个有理数存在,例如:1与2之间有1/2,1与1/2之间有1/4等,因此令人很容易以为「有理数」可以完全填满整条数线,「有理数」就是等于一切数,可惜这个想法是错的,因为……
勾股定理(毕氏铁拳)
伟大的时刻来临了,毕达哥拉斯发现了现时众所周知的勾股定理(其实中国于公元前一千一百年已有此定理),从这个定理中,毕达哥拉斯发现了一件不可思议的事,就是腰长为1的等腰直角三角形的斜边长度,竟然是一个无法写成为有理数的数。亦即是说有理数并非一切数,存在有理数以外的数,有理数不可以完全填满整条数线,他们心中的信念完完全全被破坏了,他们所恃和所自豪的信念完全被粉碎。在当时的数学界来说,是一个极大的震撼,也是历史上的「第一次数学危机」。
新的一页
原来「第一次数学危机」是「无理数」的发现,不过它还说出了「有理数」的不完备性,亦即有理数不可以完全填满整条数线,在有理数之间还有「罅隙」,无疑这些都是可被证明的事实,是不能否定的。面对着事实,数学家展开广阔的胸襟,把「无理数」引入数学的大家庭,令数学更丰富更完备,加添了无理数,数线终于被填满了。
不过,第二次数学危机又将要来临了!
第二次数学危机
「飞矢不动」的吊诡
古代的希腊是研究哲学的人聚集的地方,在云云的哲学学派之中,其中一派主张「存在是静止的,不变的,永恒的,变化与运动只是幻觉。」至于这个主张的理念,不是我们的讨论范围,不过,这个学派的学者之一——芝诺,为了论证运动是幻象,提出了「飞矢不动」的「理论」:箭在每一瞬间都要占据一定的空间位置,即箭在每一瞬间存在,即箭在每一瞬间都是静止的,又怎可能动呢?
数学——打破吊诡的武器
当然我们完全明白「飞矢不动」是一个歪论,但数学是一个讲究严谨的学科,数学家们要从问题的核心「动」作为开始,要证明「飞矢必动」。所谓动是指有速率,而速率便是所走的路程和所用的时间的比,换句话说,要证明箭在每一瞬间都是动即,要证明箭在每一瞬间都有速率,但这是一个难题,因为如何找出每一瞬间的速率呢?
无坚不摧——微积分
要解决每一瞬间的速率(以下称瞬时速度)的问题,伟大的数学家和物理学家——牛顿(1643–1727),发现了一件无坚不摧的武器——微积分,其中微分便正好可以计算出物体的瞬时速度。这个发现震惊了整个数学界和物理学界,而且除了瞬时速度,微积分更在不同方面有广泛的应用,并得到了瞬速的发展。不过,好境不常...
既不是零又不是非零?
因为微积分必须要考虑所谓「无穷小量」的问题,所谓「无穷小量」是指一个「非零而又极接近零的量」,而所谓「极接近零」是指这个量「与零之间不容许有任何空间和距离」,换句话说,「无穷小量」是一个既不是零又不是非零的量,那么,「无穷小量」是零吗?如果解不到这个问题,所谓无坚不摧的微积分,便无立足之地,一切由微积分所得出来的完美的数学和物理学上的结果也付诸流水,所以数学史上称之为「第二次数学危机」。
化危为机
数学是讲究严谨的学科,数学家必不逃避问题,面对困难,接受挑战,是数学家的不朽格言。另一位伟大的数学家柯西(1789–1857),重新建立微积分学的基础——数学分析。数学分析是透过一套严格的「数学语言——ε–语言」来说明甚么是变量、无穷小和极限等的概念和定义,解决了甚么是既不是零又不是非零的问题,而这次的危机亦安然渡过,并为数学的大家庭增添了一位成员「数学分析」,也提醒了数学家们要继续要求严格,不可松懈。
第三次数学危机
一个有趣的故事
在村有一位手艺高超的理发师,他只给村上一切不给自己刮脸的人刮脸,那么,他给不给自己刮脸呢?如果他不给自己刮脸,他是个不给自己刮脸的人,他应当给自己刮脸;如果他给自己刮脸,由于他只给不给自己刮脸的人刮脸,他就不应当给自己刮脸了。他应该如何呢?
数学和哲学界的巨匠——罗素
以上的故事就是著名的「罗素悖论」。罗素(1872–1970)是英国著名的哲学家和数学家,曾获得诺贝尔文学奖金。他想把算术系统全归结于逻辑,所以他与怀海德合作写的一本巨著《数学原理》。
理发师的威力
罗素的悖论确是给当时正为了微积分的严格基础被建立而欢欣鼓舞的数学家们泼了一盆冷水,但这个理发师的力量有多大,竟然可以推倒数学大厦呢?在较高等的数学里,我们会把整个数学的基础纳入「集合论」之中,换句话说,集合论便是数学大厦的基石,所以当集合论中出现矛盾时,建基于此之上的数学大厦也会站不住脚,而罗素的悖论却是向着这个基石作出致命的一击,这个「自己既要属于自己又同时不属于自己」的矛盾是在集合论中的矛盾,也就是在数学基础中的矛盾,只要矛盾一日存在,数学大厦也不可稳固,更会在倒塌的危机,这个也是数学的第三次危机。
解铃还须系铃人?
罗素虽然提出了问题,成为危机的制造者,但同时也是危机的解决者,罗素在他的著作之中提出了层次的理论以解决这个矛盾,使得「自己既要属于自己又同时不属于自己」不可能出现。不过,这个层次理论十分复杂,所以数学家要把这个方法加以简化,而先提出的人是策墨罗,他提出了「有限抽象原则」和几条公理,及后再由弗兰克和斯柯伦的补充修改,仍成现在在数学上较为流行公理系统——「ZFS公理系统」。这样不单只解决了罗素的悖论,令数学从回到严紧和无矛盾的领域,而且更促使一门新的数学分支——「数学基础」有着迅速的发展。
历史背景
毕达哥拉斯(约公元前572年——公元前492年)是一位古希腊的数学家及哲学家,他曾有一句名言「凡物皆数」,意思是万物的本原是数,数的规律统治万物。不过要注意的是,在那个年代,他们相信一切数字皆可以表达为整数或整数之比——分数,简单而言,他们所认识的只是「有理数」。
有趣的有理数
当时的人只有「有理数」的观念是绝不奇怪的。对于整数,在数在线我们可以知道是一点点分散的,而且点与点之间的距离是一,那就是说,整数不能完全填满整条数线,但有理数则不同了,我们发现任何两个有理数之间,必定有另一个有理数存在,例如:1与2之间有1/2,1与1/2之间有1/4等,因此令人很容易以为「有理数」可以完全填满整条数线,「有理数」就是等于一切数,可惜这个想法是错的,因为……
勾股定理(毕氏铁拳)
伟大的时刻来临了,毕达哥拉斯发现了现时众所周知的勾股定理(其实中国于公元前一千一百年已有此定理),从这个定理中,毕达哥拉斯发现了一件不可思议的事,就是腰长为1的等腰直角三角形的斜边长度,竟然是一个无法写成为有理数的数。亦即是说有理数并非一切数,存在有理数以外的数,有理数不可以完全填满整条数线,他们心中的信念完完全全被破坏了,他们所恃和所自豪的信念完全被粉碎。在当时的数学界来说,是一个极大的震撼,也是历史上的「第一次数学危机」。
新的一页
原来「第一次数学危机」是「无理数」的发现,不过它还说出了「有理数」的不完备性,亦即有理数不可以完全填满整条数线,在有理数之间还有「罅隙」,无疑这些都是可被证明的事实,是不能否定的。面对着事实,数学家展开广阔的胸襟,把「无理数」引入数学的大家庭,令数学更丰富更完备,加添了无理数,数线终于被填满了。
三次数学危机发展及解决办法
www.qsdfz.edu.cn 2010年2月22日 来源:信息中心 作者:刘伟 浏览次数:538 【字体:大 中 小】
第一次数学危机
历史背景
毕达哥拉斯(约公元前572年——公元前492年)是一位古希腊的数学家及哲学家,他曾有一句名言「凡物皆数」,意思是万物的本原是数,数的规律统治万物。不过要注意的是,在那个年代,他们相信一切数字皆可以表达为整数或整数之比——分数,简单而言,他们所认识的只是「有理数」。
有趣的有理数
当时的人只有「有理数」的观念是绝不奇怪的。对于整数,在数在线我们可以知道是一点点分散的,而且点与点之间的距离是一,那就是说,整数不能完全填满整条数线,但有理数则不同了,我们发现任何两个有理数之间,必定有另一个有理数存在,例如:1与2之间有1/2,1与1/2之间有1/4等,因此令人很容易以为「有理数」可以完全填满整条数线,「有理数」就是等于一切数,可惜这个想法是错的,因为……
勾股定理(毕氏铁拳)
伟大的时刻来临了,毕达哥拉斯发现了现时众所周知的勾股定理(其实中国于公元前一千一百年已有此定理),从这个定理中,毕达哥拉斯发现了一件不可思议的事,就是腰长为1的等腰直角三角形的斜边长度,竟然是一个无法写成为有理数的数。亦即是说有理数并非一切数,存在有理数以外的数,有理数不可以完全填满整条数线,他们心中的信念完完全全被破坏了,他们所恃和所自豪的信念完全被粉碎。在当时的数学界来说,是一个极大的震撼,也是历史上的「第一次数学危机」。
新的一页
原来「第一次数学危机」是「无理数」的发现,不过它还说出了「有理数」的不完备性,亦即有理数不可以完全填满整条数线,在有理数之间还有「罅隙」,无疑这些都是可被证明的事实,是不能否定的。面对着事实,数学家展开广阔的胸襟,把「无理数」引入数学的大家庭,令数学更丰富更完备,加添了无理数,数线终于被填满了。
不过,第二次数学危机又将要来临了!
第二次数学危机
「飞矢不动」的吊诡
古代的希腊是研究哲学的人聚集的地方,在云云的哲学学派之中,其中一派主张「存在是静止的,不变的,永恒的,变化与运动只是幻觉。」至于这个主张的理念,不是我们的讨论范围,不过,这个学派的学者之一——芝诺,为了论证运动是幻象,提出了「飞矢不动」的「理论」:箭在每一瞬间都要占据一定的空间位置,即箭在每一瞬间存在,即箭在每一瞬间都是静止的,又怎可能动呢?
数学——打破吊诡的武器
当然我们完全明白「飞矢不动」是一个歪论,但数学是一个讲究严谨的学科,数学家们要从问题的核心「动」作为开始,要证明「飞矢必动」。所谓动是指有速率,而速率便是所走的路程和所用的时间的比,换句话说,要证明箭在每一瞬间都是动即,要证明箭在每一瞬间都有速率,但这是一个难题,因为如何找出每一瞬间的速率呢?
无坚不摧——微积分
要解决每一瞬间的速率(以下称瞬时速度)的问题,伟大的数学家和物理学家——牛顿(1643–1727),发现了一件无坚不摧的武器——微积分,其中微分便正好可以计算出物体的瞬时速度。这个发现震惊了整个数学界和物理学界,而且除了瞬时速度,微积分更在不同方面有广泛的应用,并得到了瞬速的发展。不过,好境不常...
既不是零又不是非零?
因为微积分必须要考虑所谓「无穷小量」的问题,所谓「无穷小量」是指一个「非零而又极接近零的量」,而所谓「极接近零」是指这个量「与零之间不容许有任何空间和距离」,换句话说,「无穷小量」是一个既不是零又不是非零的量,那么,「无穷小量」是零吗?如果解不到这个问题,所谓无坚不摧的微积分,便无立足之地,一切由微积分所得出来的完美的数学和物理学上的结果也付诸流水,所以数学史上称之为「第二次数学危机」。
化危为机
数学是讲究严谨的学科,数学家必不逃避问题,面对困难,接受挑战,是数学家的不朽格言。另一位伟大的数学家柯西(1789–1857),重新建立微积分学的基础——数学分析。数学分析是透过一套严格的「数学语言——ε–语言」来说明甚么是变量、无穷小和极限等的概念和定义,解决了甚么是既不是零又不是非零的问题,而这次的危机亦安然渡过,并为数学的大家庭增添了一位成员「数学分析」,也提醒了数学家们要继续要求严格,不可松懈。
第三次数学危机
一个有趣的故事
在村有一位手艺高超的理发师,他只给村上一切不给自己刮脸的人刮脸,那么,他给不给自己刮脸呢?如果他不给自己刮脸,他是个不给自己刮脸的人,他应当给自己刮脸;如果他给自己刮脸,由于他只给不给自己刮脸的人刮脸,他就不应当给自己刮脸了。他应该如何呢?
数学和哲学界的巨匠——罗素
以上的故事就是著名的「罗素悖论」。罗素(1872–1970)是英国著名的哲学家和数学家,曾获得诺贝尔文学奖金。他想把算术系统全归结于逻辑,所以他与怀海德合作写的一本巨著《数学原理》。
理发师的威力
罗素的悖论确是给当时正为了微积分的严格基础被建立而欢欣鼓舞的数学家们泼了一盆冷水,但这个理发师的力量有多大,竟然可以推倒数学大厦呢?在较高等的数学里,我们会把整个数学的基础纳入「集合论」之中,换句话说,集合论便是数学大厦的基石,所以当集合论中出现矛盾时,建基于此之上的数学大厦也会站不住脚,而罗素的悖论却是向着这个基石作出致命的一击,这个「自己既要属于自己又同时不属于自己」的矛盾是在集合论中的矛盾,也就是在数学基础中的矛盾,只要矛盾一日存在,数学大厦也不可稳固,更会在倒塌的危机,这个也是数学的第三次危机。
解铃还须系铃人?
罗素虽然提出了问题,成为危机的制造者,但同时也是危机的解决者,罗素在他的著作之中提出了层次的理论以解决这个矛盾,使得「自己既要属于自己又同时不属于自己」不可能出现。不过,这个层次理论十分复杂,所以数学家要把这个方法加以简化,而先提出的人是策墨罗,他提出了「有限抽象原则」和几条公理,及后再由弗兰克和斯柯伦的补充修改,仍成现在在数学上较为流行公理系统——「ZFS公理系统」。这样不单只解决了罗素的悖论,令数学从回到严紧和无矛盾的领域,而且更促使一门新的数学分支——「数学基础」有着迅速的发展。
全部回答
- 1楼网友:英雄的欲望
- 2021-02-03 11:04
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。
我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的 , 都无法用 来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。
第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?
直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说 ,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。
第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。
我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那么理发师该不该给自己理发呢?还有大家熟悉的“说谎者悖论”,其大体内容是:一个克里特人说:“所有克里特人说的每一句话都是谎话。”试问这句话是真还是假?从数学上来说,这就是罗素悖论的一个具体例子。
罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有R R。一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则, 否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。
从此,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓ZF公理系统),这场数学危机到此缓和下来。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯