在三角形ABC中,求证sinA+sinB+sinC=4cosA/2cosB/2cosC/2.
答案:2 悬赏:60 手机版
解决时间 2021-04-07 23:48
- 提问者网友:送舟行
- 2021-04-07 17:14
在三角形ABC中,求证sinA+sinB+sinC=4cosA/2cosB/2cosC/2.
最佳答案
- 五星知识达人网友:举杯邀酒敬孤独
- 2021-04-07 18:08
4cos(A/2)cos(B/2)cos(C/2)=4cos(A/2)cos(B/2)cos(pi/2-A/2-B/2)=4cos(A/2)cos(B/2)sin(A/2+B/2)
=4cos(A/2)cos(B/2)(sin(A/2)cos(B/2)+sin(B/2)cos(A/2))
=2sinAcos(B/2)^2+2sinBcos(A/2)^2
==>
4cos(A/2)cos(B/2)cos(C/2)-sinA-sinB=sinA(2cos(B/2)^2-1)+sinB(2cos(A/2)^2-1)
=sinAcosB+sinBcosA=sin(A+B)=sin(pi-A-B)=sin(A+B)
==>
sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
=4cos(A/2)cos(B/2)(sin(A/2)cos(B/2)+sin(B/2)cos(A/2))
=2sinAcos(B/2)^2+2sinBcos(A/2)^2
==>
4cos(A/2)cos(B/2)cos(C/2)-sinA-sinB=sinA(2cos(B/2)^2-1)+sinB(2cos(A/2)^2-1)
=sinAcosB+sinBcosA=sin(A+B)=sin(pi-A-B)=sin(A+B)
==>
sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
全部回答
- 1楼网友:污到你湿
- 2021-04-07 19:18
题目应该是在锐角三角形中。 诚如是,则解答如下: 先证明sina+sinb>1+cosc。 由a、b是锐角得a-b<c及b-a<c,可得cos[(a-b)/2]>cos(c/2)。又sin[(a+b)/2]=cos(c/2),所以sina+sinb-(1+cosc)=2sin[(a+b)/2]cos[(a-b)/2]-2cos²(c/2)=2cos(c/2){cos[(a-b)/2]-cos(c/2)}>0,所以sina+sinb>1+cosc。 所以sina+sinb+sinc>1+cosc+sinc=1+√2sin(c+π/4)。 c是锐角,所以π/4<c+π/4<3π/4,sin(c+π/4)>√2/2,1+√2sin(c+π/4)>2。结论成立。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯