【等差数列的性质】等差数列的性质有什么?
答案:2 悬赏:60 手机版
解决时间 2021-01-25 05:40
- 提问者网友:趣果有间
- 2021-01-24 15:07
【等差数列的性质】等差数列的性质有什么?
最佳答案
- 五星知识达人网友:笑迎怀羞
- 2021-01-24 15:47
【答案】 基本性质
⑴数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).
⑵在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1) ;当项数为(2n-1)(n∈ N+)时,S奇—S偶=a中 ,S奇÷S偶 =n÷(n-1) .
⑶若数列为等差数列,则S n,S2n -Sn ,S3n -S 2n,…仍然成等差数列,公差为k^2d .
(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1.
⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列中,是n的一次函数,且点(n,)均在直线y = x + (a - )上.
⑺记等差数列的前n项和为S .①若a >0,公差d
⑴数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).
⑵在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1) ;当项数为(2n-1)(n∈ N+)时,S奇—S偶=a中 ,S奇÷S偶 =n÷(n-1) .
⑶若数列为等差数列,则S n,S2n -Sn ,S3n -S 2n,…仍然成等差数列,公差为k^2d .
(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1.
⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列中,是n的一次函数,且点(n,)均在直线y = x + (a - )上.
⑺记等差数列的前n项和为S .①若a >0,公差d
全部回答
- 1楼网友:执傲
- 2021-01-24 16:45
这个答案应该是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯