已知ax4+bx3+cx2+dx+e=(2x-1)4,则a+c的值是A.39B.40C.41D.42
答案:2 悬赏:30 手机版
解决时间 2021-04-09 09:04
- 提问者网友:骨子里的高雅
- 2021-04-09 03:47
已知ax4+bx3+cx2+dx+e=(2x-1)4,则a+c的值是A.39B.40C.41D.42
最佳答案
- 五星知识达人网友:鱼忧
- 2021-04-09 04:16
B解析分析:由ax4+bx3+cx2+dx+e=(2x-1)4,把(2x-1)4展开后根据次数相等时系数相等即可求解.解答:(2x-1)4=(2x-1)2×(2x-1)2=16x4-32x3+24x2-8x+1,由ax4+bx3+cx2+dx+e=(2x-1)4,∴a=16,c=24.故a+c=40.故选B.点评:本题考查了完全平方公式,属于基础题,关键是根据展开后次数相等的项的系数对应相等.
全部回答
- 1楼网友:一把行者刀
- 2021-04-09 04:23
好好学习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯