(x+y)^4+(x^2-y^2)^2+(x-y)^4 因式分解
答案:2 悬赏:70 手机版
解决时间 2021-03-07 16:15
- 提问者网友:niaiwoma
- 2021-03-07 08:41
用“换元法”解出
最佳答案
- 五星知识达人网友:怙棘
- 2021-03-07 09:16
(x+y)^4+(x^2-y^2)^2+(x-y)^4
=(x+y)^4+(x+y)^2(x-y)^2+(x-y)^4
=(x+y)^4+2(x+y)^2(x-y)^2+(x-y)^4-(x+y)^2(x-y)^2
=[(x+y)^2+(x-y)^2]^2-(x^2-y^2)^2
=(2x^2+2y^2)^2-(x^2-y^2)^2
=[(2x^2+2y^2)+(x^2-y^2)][(2x^2+2y^2)-(x^2-y^2)]
=(3x^2+y^2)(x^2+3y^2)
用换元法的话,就把x+y=a.x-y=b,代入,最后回代即可
=(x+y)^4+(x+y)^2(x-y)^2+(x-y)^4
=(x+y)^4+2(x+y)^2(x-y)^2+(x-y)^4-(x+y)^2(x-y)^2
=[(x+y)^2+(x-y)^2]^2-(x^2-y^2)^2
=(2x^2+2y^2)^2-(x^2-y^2)^2
=[(2x^2+2y^2)+(x^2-y^2)][(2x^2+2y^2)-(x^2-y^2)]
=(3x^2+y^2)(x^2+3y^2)
用换元法的话,就把x+y=a.x-y=b,代入,最后回代即可
全部回答
- 1楼网友:动情书生
- 2021-03-07 10:46
(x+y)^4+(x^2-y^2)^2+(x-y)^4
=((x+y)^2)^2+((x-y)^2)^2+2(x+y)^2(x-y)^2-2(x+y)^2(x-y)^2+(x^2-y^2)^2
=[(x+y)^2+(x-y)^2]^2-(x^2-y^2)^2
=(2x^2+2y^2)^2-(x^2-y^2)^2
=(2x^2+2y^2+x^2-y^2)(2x^2+2y^2-x^2+y^2)
=(3x^2+y^2)(x^2+3y^2)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯