专转本数学考什么详细 (江苏省的)
答案:2 悬赏:40 手机版
解决时间 2021-01-30 08:13
- 提问者网友:欺烟
- 2021-01-29 14:02
专转本数学考什么详细 (江苏省的)
最佳答案
- 五星知识达人网友:野味小生
- 2021-01-29 14:24
一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数.(2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性.(3)了解反函数:反函数的定义,反函数的图象.(4)掌握函数的四则运算与复合运算.(5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数.(6)了解初等函数的概念.(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势.会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则.(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限.(4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较.(6)熟练掌握用两个重要极限求极限的方法.(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类.(2)掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.(3)掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题.(4)理解初等函数在其定义区间上连续,并会利用连续性求极限.二、一元函数微分学(一)导数与微分(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数.(2)会求曲线上一点处的切线方程与法线方程.(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法.(4)掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数.(5)理解高阶导数的概念,会求简单函数的n阶导数.(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.(二)中值定理及导数的应用(1)了解罗尔中值定理、拉格朗日中值定理及它们的几何意义.(2)熟练掌握洛必达法则求“0/0”、“∞/ ∞”、“0?∞”、“∞-∞”、“1∞”、“00”和“∞0”型未定式的极限方法.(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式.(4)理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题.(5)会判定曲线的凹凸性,会求曲线的拐点.(6)会求曲线的水平渐近线与垂直渐近线.三、一元函数积分学(一)不定积分(1)理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理.(2)熟练掌握不定积分的基本公式.(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换).(4)熟练掌握不定积分的分部积分法.(二)定积分(1)理解定积分的概念与几何意义,了解可积的条件.(2)掌握定积分的基本性质.(3)理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法.(4)掌握牛顿—莱布尼茨公式.(5)掌握定积分的换元积分法与分部积分法.(6)理解无穷区间广义积分的概念,掌握其计算方法.(7)掌握直角坐标系下用定积分计算平面图形的面积.四、向量代数与空间解析几何
全部回答
- 1楼网友:猎心人
- 2021-01-29 15:22
感谢回答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯