条件随机场的具体算法
答案:1 悬赏:80 手机版
解决时间 2021-11-29 22:31
- 提问者网友:星軌
- 2021-11-28 23:54
条件随机场的具体算法
最佳答案
- 五星知识达人网友:时间的尘埃
- 2021-11-29 01:30
条件随机场(CRF)由Lafferty等人于2001年提出,结合了最大熵模型和隐马尔可夫模型的特点,是一种无向图模型,近年来在分词、词性标注和命名实体识别等序列标注任务中取得了很好的效果。
条件随机场是一个典型的判别式模型,其联合概率可以写成若干势函数联乘的形式,其中最常用的是线性链条件随机场。若让x=(x1,x2,…xn)表示被观察的输入数据序列,y=(y1,y2,…yn)表示一个状态序列,在给定一个输入序列的情况下,线性链的CRF模型定义状态序列的联合条件概率为
p(y|x)=exp{} (2-14)
Z(x)={} (2-15)
其中:Z是以观察序列x为条件的概率归一化因子;fj(yi-1,yi,x,i)是一个任意的特征函数;是每个特征函数的权值。 CRF的算法实现目前已经有多个知名的开源项目 ,并且已经被广泛应用在学术界研究以及工业界应用当中。
条件随机场是一个典型的判别式模型,其联合概率可以写成若干势函数联乘的形式,其中最常用的是线性链条件随机场。若让x=(x1,x2,…xn)表示被观察的输入数据序列,y=(y1,y2,…yn)表示一个状态序列,在给定一个输入序列的情况下,线性链的CRF模型定义状态序列的联合条件概率为
p(y|x)=exp{} (2-14)
Z(x)={} (2-15)
其中:Z是以观察序列x为条件的概率归一化因子;fj(yi-1,yi,x,i)是一个任意的特征函数;是每个特征函数的权值。 CRF的算法实现目前已经有多个知名的开源项目 ,并且已经被广泛应用在学术界研究以及工业界应用当中。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯