从1乘到30,得到的那几个数未尾连续的零?
答案:3 悬赏:50 手机版
解决时间 2021-03-15 05:30
- 提问者网友:轮囘Li巡影
- 2021-03-14 12:16
从1乘到30,得到的那几个数未尾连续的零?
最佳答案
- 五星知识达人网友:廢物販賣機
- 2021-03-14 13:20
不对的 是6个 76末尾的0
从1到10,连续10个整数相乘:
1×2×3×4×5×6×7×8×9×10。
连乘积的末尾有几个0?
答案是两个0。其中,从因数10得到1个0,从因数2和5相乘又得到1个0,共计两个。
刚好两个0?会不会再多几个呢?
如果不相信,可以把乘积计算出来,结果得到
原式=3628800。你看,乘积的末尾刚好两个0,想多1个也没有。
那么,如果扩大规模,拉长队伍呢?譬如说,从1乘到20:
1×2×3×4×…×19×20。这时乘积的末尾共有几个0呢?
现在答案变成4个0。其中,从因数10得到1个0,从20得到1个0,从5和2相乘得到1个0,从15和4相乘又得到1个0,共计4个0。
刚好4个0?会不会再多几个?
请放心,多不了。要想在乘积末尾得到一个0,就要有一个质因数5和一个质因数2配对相乘。在乘积的质因数里,2多、5少。有一个质因数5,乘积末尾才有一个0。从1乘到20,只有5、10、15、20里面各有一个质因数5,乘积末尾只可能有4个0,再也多不出来了。
把规模再扩大一点,从1乘到30:
1×2×3×4×…×29×30。现在乘积的末尾共有几个0?
很明显,至少有6个0。
你看,从1到30,这里面的5、10、15、20、25和30都是5的倍数。从它们每个数可以得到1个0;它们共有6个数,可以得到6个0。
刚好6个0?会不会再多一些呢?
能多不能多,全看质因数5的个数。25是5的平方,含有两个质因数5,这里多出1个5来。从1乘到30,虽然30个因数中只有6个是5的倍数,但是却含有7个质因数5。所以乘积的末尾共有7个0。
乘到30的会做了,无论多大范围的也就会做了。
例如,这次乘多一些,从1乘到100:
1×2×3×4×…×99×100。现在的乘积末尾共有多少个0?
答案是24个。其中的道理就用不着说了。
从1到10,连续10个整数相乘:
1×2×3×4×5×6×7×8×9×10。
连乘积的末尾有几个0?
答案是两个0。其中,从因数10得到1个0,从因数2和5相乘又得到1个0,共计两个。
刚好两个0?会不会再多几个呢?
如果不相信,可以把乘积计算出来,结果得到
原式=3628800。你看,乘积的末尾刚好两个0,想多1个也没有。
那么,如果扩大规模,拉长队伍呢?譬如说,从1乘到20:
1×2×3×4×…×19×20。这时乘积的末尾共有几个0呢?
现在答案变成4个0。其中,从因数10得到1个0,从20得到1个0,从5和2相乘得到1个0,从15和4相乘又得到1个0,共计4个0。
刚好4个0?会不会再多几个?
请放心,多不了。要想在乘积末尾得到一个0,就要有一个质因数5和一个质因数2配对相乘。在乘积的质因数里,2多、5少。有一个质因数5,乘积末尾才有一个0。从1乘到20,只有5、10、15、20里面各有一个质因数5,乘积末尾只可能有4个0,再也多不出来了。
把规模再扩大一点,从1乘到30:
1×2×3×4×…×29×30。现在乘积的末尾共有几个0?
很明显,至少有6个0。
你看,从1到30,这里面的5、10、15、20、25和30都是5的倍数。从它们每个数可以得到1个0;它们共有6个数,可以得到6个0。
刚好6个0?会不会再多一些呢?
能多不能多,全看质因数5的个数。25是5的平方,含有两个质因数5,这里多出1个5来。从1乘到30,虽然30个因数中只有6个是5的倍数,但是却含有7个质因数5。所以乘积的末尾共有7个0。
乘到30的会做了,无论多大范围的也就会做了。
例如,这次乘多一些,从1乘到100:
1×2×3×4×…×99×100。现在的乘积末尾共有多少个0?
答案是24个。其中的道理就用不着说了。
全部回答
- 1楼网友:西岸风
- 2021-03-14 15:24
7个
- 2楼网友:梦中风几里
- 2021-03-14 14:21
有三个0.因为30个数中只有10、20和30的个位是0(任何数乘以0等于0).
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯