已知函数f(x)=log2X,x∈【2,8】,函数g(x)=f^2(x)-2af(x)+3的最小值为
答案:2 悬赏:0 手机版
解决时间 2021-02-20 23:18
- 提问者网友:沉默菋噵
- 2021-02-20 09:32
已知函数f(x)=log2X,x∈【2,8】,函数g(x)=f^2(x)-2af(x)+3的最小值为
最佳答案
- 五星知识达人网友:零点过十分
- 2021-02-20 10:30
我理解题目的意思是这样的:已知:函数f(x)=log2(X),x∈[2,8], 函数g(x)=f²(x)-2af(x)+3的最小值为h(a),是否存在实数M,N同时满足以下条件:①M>N>3;②当h(a)的定义域为[N,M]时,值域为[N²,M²];若存在,求出M ,N的值;若不存在,说明理由.解:∵f(x)=log2(X),x∈[2,8]∴f(x)∈[1,3]设f(x)=t则g(t)=t²-2at+3,t∈[1,3] =(t-a)²+3-a²∵g(t)的最小值为h(a)∴即要求g(t)=(t-a)²+3-a²这个二次方程的最小值但是对称轴t=a的位置是未知的,无法确定对称轴的位置,就无法判断最小值在何处取得,所以要对a进行分情况讨论(三种情况见图.另:因为t∈[1,3],所以三种情况的图像只取[1,3]区间内的,即红色部分);①当a<1时,最小值在t=1处取得;此时,最小值h(a)= -2a+4②当1≤a≤3时,最小值在对称轴t=a处取得;此时,最小值h(a)= -a²+3③当a>3时,最小值在t=3处取得;此时,最小值h(a)= -6a+12再看M、N要满足的第一个条件:M>N>3,也就是要求h(a)定义域大于3,只有第三种情况a>3满足,综上h(a)= -6a+12 (a>3);再看M、N要满足的第一个条件:当h(a)的定义域为[N,M]时,值域为[N²,M²],值域都为平方型的,即值域是大于等于0;但是由上一个条件得到的h(a),在a>3时,h(a)的值域是小于0的,与条件要求不符,所以不存在这样的M和N.也不知道我对题目的理解对不对,也不知你能不能看懂我写的这么多,但是就按照我的理解成的这种题型:讨论二次函数的对称轴位置的题,还是挺常见的,即使我理解错了你的题目,你把这个方法看看还是能挺有用的~ 已知函数f(x)=log2X,x∈【2,8】,函数g(x)=f^2(x)-2af(x)+3的最小值为h(a),是否存在实数M,同时满足以下条3,2.当h(a)的定义域为【N,M】时,值域为【N^2,M^2】,若存在,求出M ,N的值;若不存在,说明理由(图1)答案网 www.Zqnf.com 答案网 www.Zqnf.com
全部回答
- 1楼网友:往事隔山水
- 2021-02-20 11:56
收益了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯