已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90.
求证:直线AC是圆O的切线.
已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90.求证:直线AC是圆O的切线.
答案:2 悬赏:20 手机版
解决时间 2021-04-04 17:21
- 提问者网友:你给我的爱
- 2021-04-03 18:04
最佳答案
- 五星知识达人网友:酒者煙囻
- 2021-04-03 19:07
证明:∵OD=OC,∠DOC=90°,
∴∠ODC=∠OCD=45°.
∵∠DOC=2∠ACD=90°,
∴∠ACD=45°.
∴∠ACD+∠OCD=∠OCA=90°.
∵点C在圆O上,
∴直线AC是圆O的切线.解析分析:证明OC⊥AC即可.根据△DOC是等腰直角三角形可得∠DCO=45°.又因为∠ACD=45°,所以∠ACO=90°,得证.点评:此题考查了切线的判定,关键是根据△DOC是等腰直角三角形可得∠DCO=45°.
∴∠ODC=∠OCD=45°.
∵∠DOC=2∠ACD=90°,
∴∠ACD=45°.
∴∠ACD+∠OCD=∠OCA=90°.
∵点C在圆O上,
∴直线AC是圆O的切线.解析分析:证明OC⊥AC即可.根据△DOC是等腰直角三角形可得∠DCO=45°.又因为∠ACD=45°,所以∠ACO=90°,得证.点评:此题考查了切线的判定,关键是根据△DOC是等腰直角三角形可得∠DCO=45°.
全部回答
- 1楼网友:神的生死簿
- 2021-04-03 20:25
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯