已知椭圆焦点在x轴上,P为椭圆上一点,F1、F2为两焦点,PF1⊥PF2若P到两准线的距离为6和12,求椭圆方程。
数学:椭圆的方程
答案:1 悬赏:80 手机版
解决时间 2021-07-29 13:03
- 提问者网友:太高姿态
- 2021-07-29 03:32
最佳答案
- 五星知识达人网友:一秋
- 2021-07-29 04:34
注:x^2是X的方,写的纤细点不要看花了哦!
解:P(x1,y1), Q(x2,y2)
设椭圆方程: x^2/a^2+y^2/b^2=1
联立: y=x+1 x^2/a^2+y^2/b^2=1
(a^2+b^2)x^2+2xa^2+a^2-(ab)^2=0
x1+x2=-2a^2/(a^2+b^2)
x1x2=[a^2-(ab)^2]/(a^2+b^2)
向量OP=(x1,y1), 向量OQ=(x2,y2),
OP垂直OQ
x1x2+y1y2=0 y1y2=x1x2+(x1+x2)+1
∴2x1x2+(x1+x2)+1=0 ....(1)
PQ=√{(1+1^2)[(x1+x2) ^2-4x1x2]}=(√10)/2
(x1+x2)^2-4x1x2-5/4=0....(2)
联立: (1)(2)
x1+x2=-3/2 x1x2=1/4
or x1+x2=-1/2 x1x2=-1/4
x1+x2=-2a^2/(a^2+b^2)=-3/2
x1x2=[a^2-(ab)^2]/(a^2+b^2)=1/4
a^2=2 b^2=2/3
或
x1+x2=-2a^2/(a^2+b^2)=-1/2
x1x2=[a^2-(ab)^2]/(a^2+b^2)=-1/4
a^2=2/3 b^2=2
∴ (x^2/2)+(3y^2/2)=1
或 (3x^2/2)+(y^2/2)=1
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯