如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.试判断AE与CG之间的关系?并说明理由.
答案:2 悬赏:60 手机版
解决时间 2021-04-10 04:53
- 提问者网友:雪舞兮
- 2021-04-09 06:05
如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.试判断AE与CG之间的关系?并说明理由.
最佳答案
- 五星知识达人网友:英雄的欲望
- 2021-04-09 07:31
证明:AE=CG且AE⊥CG;
∵四边形ABCD和四边形DEFG都是正方形,
∴AD=CD,DE=DG,∠ADC=∠EDG=90°(正方形的性质);
∴∠ADE=∠CDG(等量代换);
∴△ADE≌△CDG;
∴AE=CG(全等三角形的性质);
∵△ADE≌△CDG,
∴∠DAE=∠DCG(全等三角形的性质);
∵∠ANM=∠CND,
∴∠AMN=∠ADC=90°;
∴AE⊥CG.解析分析:根据正方形的性质,利用SAS可判定△ADE≌△CDG,根据全等三角形的性质可得AE=CG,再根据余角的性质可推出AE⊥CG.点评:此题考查学生对正方形的判定及全等三角形的判定与性质的综合运用.
∵四边形ABCD和四边形DEFG都是正方形,
∴AD=CD,DE=DG,∠ADC=∠EDG=90°(正方形的性质);
∴∠ADE=∠CDG(等量代换);
∴△ADE≌△CDG;
∴AE=CG(全等三角形的性质);
∵△ADE≌△CDG,
∴∠DAE=∠DCG(全等三角形的性质);
∵∠ANM=∠CND,
∴∠AMN=∠ADC=90°;
∴AE⊥CG.解析分析:根据正方形的性质,利用SAS可判定△ADE≌△CDG,根据全等三角形的性质可得AE=CG,再根据余角的性质可推出AE⊥CG.点评:此题考查学生对正方形的判定及全等三角形的判定与性质的综合运用.
全部回答
- 1楼网友:蕴藏春秋
- 2021-04-09 08:27
这个问题我还想问问老师呢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯