matlab中求中心差分的方法?
答案:2 悬赏:80 手机版
解决时间 2021-04-02 22:58
- 提问者网友:战皆罪
- 2021-04-02 06:08
matlab中求中心差分的方法?
最佳答案
- 五星知识达人网友:杯酒困英雄
- 2021-04-02 06:17
第8章 MATLAB数值积分与微分
8.1 数值积分
8.2 数值微分
8.1 数值积分
8.1.1 数值积分基本原理
求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson) 法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。
8.1.2 数值积分的实现方法
1.变步长辛普生法
基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为:
[I,n]=quad('fname',a,b,tol,trace)
其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。
例8-1 求定积分。
(1) 建立被积函数文件fesin.m。
function f=fesin(x)
f=exp(-0.5*x).*sin(x+pi/6);
(2) 调用数值积分函数quad求定积分。
[S,n]=quad('fesin',0,3*pi)
S =
0.9008
n =
77
8.1 数值积分
8.2 数值微分
8.1 数值积分
8.1.1 数值积分基本原理
求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson) 法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。
8.1.2 数值积分的实现方法
1.变步长辛普生法
基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为:
[I,n]=quad('fname',a,b,tol,trace)
其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。
例8-1 求定积分。
(1) 建立被积函数文件fesin.m。
function f=fesin(x)
f=exp(-0.5*x).*sin(x+pi/6);
(2) 调用数值积分函数quad求定积分。
[S,n]=quad('fesin',0,3*pi)
S =
0.9008
n =
77
全部回答
- 1楼网友:不如潦草
- 2021-04-02 07:16
说的好
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯