怎么能问倒问问?
答案:5 悬赏:50 手机版
解决时间 2021-05-04 11:57
- 提问者网友:美人性情
- 2021-05-03 18:40
怎么能问倒问问?
最佳答案
- 五星知识达人网友:举杯邀酒敬孤独
- 2021-05-03 20:07
你这个问题就已经问倒问问了
全部回答
- 1楼网友:酒安江南
- 2021-05-04 01:21
先生:“你意问倒问问叻. 谢谢”
- 2楼网友:风格不统一
- 2021-05-04 00:00
正十七边形(百度上给的):步骤一: 给一圆O,作两垂直的直径OA、OB, 在OB上作C点使OC=1/4OB, 作D点使∠OCD=1/4∠OCA 作AO延长线上E点使得∠DCE=45度 步骤二: 作AE中点M,并以M为圆心作一圆过A点, 此圆交OB于F点,再以D为圆心,作一圆 过F点,此圆交直线OA于G4和G6两点。 步骤三: 过G4作OA垂直线交圆O于P4, 过G6作OA垂直线交圆O于P6, 则以圆O为基准圆,A为正十七边形之第一顶点, P4为第四顶点,P6为第六顶点。 以1/2弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。 备注一 一个正质数多边形可以用标尺作图的充分和必要条件是,该多边形的边数必定是一个费马质数。换句话说,只有正三边形、正五边形、正十七边形、正257边形和正63357边形可以用尺规作出来,其它的正质数多边形就不可以了。(除非我们再发现另一个费马质数。) 备注二 黎西罗给出了正257边形的尺规作法,写满了整整80页纸。盖尔梅斯给出了正63357边形的尺规作法,此手稿整整装满了一只手提箱,现存于德国哥廷根大学。这是有史以来最繁琐的尺规作图。 备注三 正十七边形的尺规作图存在之证明: 设正17边形中心角为a,则17a=360度,即16a=360度-a 故sin16a=-sina,而 sin16a=2sin8acos8a=2方sin4acos4acos8a=2的4次方sinacosacos2acos4acos8a 因sina不等于0,两边除之有: 16cosacos2acos4acos8a=-1 又由2cosacos2a=cosa+cos3a等,有 2(cosa+cos2a+…+cos8a)=-1 注意到 cos15a=cos2a,cos12a=cos5a,令 x=cosa+cos2a+cos4a+cos8a y=cos3a+cos5a+cos6a+cos7a 有: x+y=-1/2 又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a) =1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a) 经计算知xy=-1 又有 x=(-1+根号17)/4,y=(-1-根号17)/4 其次再设: x1=cosa+cos4a,x2=cos2a+cos8a y1=cos3a+cos5a,y2=cos6a+cos7a 故有x1+x2=(-1+根号17)/4 y1+y2=(-1-根号17)/4 解之可有: (大家自己解解吧~~~~) 最后,由cosa+cos4a=x1,cosacos4a=(y1)/2 可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出。
- 3楼网友:思契十里
- 2021-05-03 22:26
登录问问,按提问后提要提的问题
- 4楼网友:罪歌
- 2021-05-03 21:39
看你的提问是否很难啊 、问问问问、就是不懂就问嘛、呵呵
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯