如图所示,有一足够长的光滑平行金属导轨,电阻不计,间距L=0.5m,导轨沿与水平方向成θ=30°倾斜放置,底部连接有一个阻值为R=3Ω的电阻.现将一根长也为L质量为m=0.2kg、电阻r=2Ω的均匀金属棒,自轨道顶部静止释放后沿轨道自由滑下,下滑中均保持与轨道垂直并接触良好,经一段距离后进入一垂直轨道平面的匀强磁场中,如图所示.磁场上部有边界OP,下部无边界,磁感应强度B=2T.金属棒进入磁场后又运动了一段距离便开始做匀速直线运动,在做匀速直线运动之前这段时间内,金属棒上产生了Qr=2.4J的热量,且通过电阻R上的电荷量为q=0.6C,取g=10m/s2.求:
(1)金属棒匀速运动时的速v0;
(2)金属棒进入磁场后,当速度v=6m/s时,其加速度a的大小及方向;
(3)磁场的上部边界OP距导轨顶部的距离S.
如图所示,有一足够长的光滑平行金属导轨,电阻不计,间距L=0.5m,导轨沿与水平方向成θ=30°倾斜放置,底部连接有一个
答案:1 悬赏:10 手机版
解决时间 2021-08-16 04:09
- 提问者网友:你挡着我发光了
- 2021-08-15 04:37
最佳答案
- 五星知识达人网友:逃夭
- 2021-08-15 05:24
(1)根据平衡条件得:F安=mgsinθ
又F安=BIL,I=
E
R+r,E=BLv0,则:F安=
B2L2v0
R+r,
代入数据解得:v0=5m/s;
(2)由牛顿第二定律得:mgsinθ-F安=ma,
代入数据解得:a=-1m/s2,
说明此时加速度大小为1m/s2,方向沿斜面向上.
(3)由于金属棒r和电阻R上电流时刻相同,由焦耳定律Q=I2Rt,得知Q∝R
则R产生的热量为QR=
R
rQr,
代入数据解得:QR=3.6J,
金属棒匀速运动整个电路产生的总热量为:Q=QR+Qr=3.6+2.4=6J,
在该过程中电路的平均电流为I=
E
R+r=
△φ
△t(R+r),
设匀速前金属棒在磁场中位移为x,则此过程中通过R的电量为:
q=I?△t=
△φ
R+r=
BLx
R+r,
从释放到刚匀速运动过程中,由能量守恒定律得:
gsinθ(S+x)=
1
2mv02+Q,
代入数据解得:S=5.5m.
答:(1)金属棒匀速运动时的速v0为5m/s;
(2)金属棒进入磁场后,当速度v=6m/s时,加速度大小为1m/s2,方向沿斜面向上;
(3)磁场的上部边界OP距导轨顶部的距离S为5.5m.
试题解析:
匀速运动时,金属棒受到重力、支持力和安培力作用.安培力与速度有关,根据平衡条件可求出速度.根据牛顿第二定律求出加速度.金属棒自轨道顶部静止释放后沿轨道自由滑下,其重力势能转化为动能和内能,根据能量守恒定律求得距离S.
名师点评:
本题考点: 导体切割磁感线时的感应电动势;电磁感应中的能量转化.
考点点评: 本题电磁感应中的力学问题,电磁与力联系桥梁是安培力,这种类问题在于安培力的分析和计算.涉及热量常常从能量守恒研究.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯