已知数列{an},Sn是其n前项的和,且满足3an=2Sn+n(n∈N*)(1)求证:数列{an+12}为等比数列;(2)记Tn
答案:2 悬赏:40 手机版
解决时间 2021-03-19 12:22
- 提问者网友:最美的风景
- 2021-03-18 21:35
已知数列{an},Sn是其n前项的和,且满足3an=2Sn+n(n∈N*)(1)求证:数列{an+12}为等比数列;(2)记Tn=S1+S2+L+Sn,求Tn的表达式;(3)记Cn=23(an+12),求数列{nCn}的前n项和Pn.
最佳答案
- 五星知识达人网友:何以畏孤独
- 2021-03-18 23:02
(1)∵3an=2Sn+n,
∴a1=1,
当n≥2时,3(an-an-1)=2an+1,即an=3an-1+1,
∴an+
1
2 =3an-1+1+
1
2 =3(an-1+
1
2 ),
∴数列{an+
1
2 }是首项为
3
2 ,公比为3的为等比数列;
(2)由(1)知,an+
1
2 =
3
2 ?3n-1,
∴an=
1
2 ×3n-
1
2 ,
∴Sn=a1+a2+…+an
=
1
2 ?
3(1?3n)
1?3 -
n
2
=
3
4 ?3n-
1
4 (2n+3),
∴Tn=S1+S2+…+Sn
=
3
4 (3+32+…+3n)-
1
4 ×
(5+2n+3)n
2
=
3
4 ?
3(1?3n)
1?3 -
n(n+4)
4
=
9
8 (3n-1)-
n(n+4)
4 .
(3)∵Cn=
2
3 (an+
1
2 )=
2
3 ×
1
2 ×3n=3n-1,
∴Pn=1×30+2×3+3×32+…+n?3n-1,
∴3Pn=1×3+2×32+…+(n-1)?3n-1+n?3n,
两式相减得:
-2
∴a1=1,
当n≥2时,3(an-an-1)=2an+1,即an=3an-1+1,
∴an+
1
2 =3an-1+1+
1
2 =3(an-1+
1
2 ),
∴数列{an+
1
2 }是首项为
3
2 ,公比为3的为等比数列;
(2)由(1)知,an+
1
2 =
3
2 ?3n-1,
∴an=
1
2 ×3n-
1
2 ,
∴Sn=a1+a2+…+an
=
1
2 ?
3(1?3n)
1?3 -
n
2
=
3
4 ?3n-
1
4 (2n+3),
∴Tn=S1+S2+…+Sn
=
3
4 (3+32+…+3n)-
1
4 ×
(5+2n+3)n
2
=
3
4 ?
3(1?3n)
1?3 -
n(n+4)
4
=
9
8 (3n-1)-
n(n+4)
4 .
(3)∵Cn=
2
3 (an+
1
2 )=
2
3 ×
1
2 ×3n=3n-1,
∴Pn=1×30+2×3+3×32+…+n?3n-1,
∴3Pn=1×3+2×32+…+(n-1)?3n-1+n?3n,
两式相减得:
-2
全部回答
- 1楼网友:一秋
- 2021-03-19 00:25
1.
证:
sn=(3an-n)/2
sn-1=[3a(n-1)-(n-1)]/2
an=sn-sn-1=[3an-3a(n-1)-1]/2
an=3a(n-1)+1
an+1/2=3a(n-1)+3/2=3[a(n-1)+1/2]
(an+1/2)/[a(n-1)+1/2]=3,为定值,因此
{an+1/2}为等比数列。
令n=1
3a1=2a1+1
a1=1
a1+1/2=3/2
tn=s1+s2+...+sn
=(1/2)(2s1+2s2+...+2sn)
=(1/2)(3a1-1+3a2-2+...+3an-n)
=[-n(n+1)/4]+(3/2)(a1+a2+...+an)
=[-n(n+1)/4]+(3/2)[a1+1/2+a2+1/2+...+an+1/2-n/2]
=[-n(n+1)/4]-3n/4+(3/2)(3/2)(3^n-1)/2
=[9(3^n-1)-2n(n+4)]/8
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯