已知y1=ax2+bx+c,y2=ax+b.(其中a>0),若当-1≤x≤1时,总有|y1|≤1.
(1)证明:当-1≤x≤1时,|c|≤1;
(2)若当-1≤x≤1时,y2的最大值为2.求y1的表达式.
已知y1=ax2+bx+c,y2=ax+b.(其中a>0),若当-1≤x≤1时,总有|y1|≤1.(1)证明:当-1≤x≤1时,|c|≤1;(2)若当-1≤x≤1时,
答案:2 悬赏:0 手机版
解决时间 2021-03-29 21:37
- 提问者网友:容嬷嬷拿针来
- 2021-03-29 15:58
最佳答案
- 五星知识达人网友:撞了怀
- 2020-05-03 21:01
解:(1)由-1≤x≤1时,总有|y1|≤1.
令x=0,得|c|≤1;(12分)
(2)在y1=ax2+bx+c中.令x=1得-1≤a+b+c≤1①
∵y2=ax+b.(其中a>0)的最大值为2
∴a+b=2代入①得-1≤2+c≤1-3≤c≤-1
而由(1)知-1≤c≤1
∴c=-1?(8分)
?y1=ax2+bx-1?x=0时,y1取得最小值为-1
∴故必有b=0.?a=2?y1=2x2-1.(12分)解析分析:(1)取-1≤x≤1内的特殊值x=0,即可得到结论|c|≤1;(2)根据二次函数y2的最大值为2求得a+b=2,由定义域的取值范围“-1≤x≤1”知当x=1时,-1≤a+b+c≤1①,所以联合(1)中的c的取值范围求得c=-1;然后由二次函数y1的最小值求得b=0,从而知a=2,将a、b、c的值代入二次函数y1=ax2+bx+c,即可求得y1的表达式.点评:本题主要考查了二次函数的综合题.解答该题时,在定义域内取特殊值来求二次函数的系数,即利用待定系数法求得二次函数的解析式.
令x=0,得|c|≤1;(12分)
(2)在y1=ax2+bx+c中.令x=1得-1≤a+b+c≤1①
∵y2=ax+b.(其中a>0)的最大值为2
∴a+b=2代入①得-1≤2+c≤1-3≤c≤-1
而由(1)知-1≤c≤1
∴c=-1?(8分)
?y1=ax2+bx-1?x=0时,y1取得最小值为-1
∴故必有b=0.?a=2?y1=2x2-1.(12分)解析分析:(1)取-1≤x≤1内的特殊值x=0,即可得到结论|c|≤1;(2)根据二次函数y2的最大值为2求得a+b=2,由定义域的取值范围“-1≤x≤1”知当x=1时,-1≤a+b+c≤1①,所以联合(1)中的c的取值范围求得c=-1;然后由二次函数y1的最小值求得b=0,从而知a=2,将a、b、c的值代入二次函数y1=ax2+bx+c,即可求得y1的表达式.点评:本题主要考查了二次函数的综合题.解答该题时,在定义域内取特殊值来求二次函数的系数,即利用待定系数法求得二次函数的解析式.
全部回答
- 1楼网友:摆渡翁
- 2019-06-17 16:39
我检查一下我的答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯