AE^2=AD^2+DE^2=AD^2+(AD-CE)^2=BC^2+CE^2+CD^2-2CD*CE=BC^2+CE^2+CD(CD-2CE)
如果E是CM的中点,则CD-2CE=2CE
AE^2=(BC+CE)^2
AE=BC+CE
P是BC中点,过P点作PQ⊥AE,交AE于Q,连接EP
PB=1/2×BC DM=1/2×CD
PB=DM AD=AB ∠ADM=∠ABP
∴△ADM≌△ABP
∴∠DAM=∠BAP
∵∠BAP+∠QAP=∠BAE=2∠DAM=2∠BAP
∴∠BAP=∠QAP
∠ABP=∠AQP
∴△AQP≌△ABP
∴PQ=PB=PC
∠EQP=∠ECP
∴△EQP≌△ECP
∴EQ=CE
AQ=AB=BC
∴AE=AQ+EQ=BC+CE