如图,已知平行四边形ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F.
(1)求证:CD=FA;
(2)若使∠F=∠BCF,平行四边形ABCD的边长之间还需再添加一个什么条件?请你补上这个条件,并进行证明(不要再增添辅助线).
如图,已知平行四边形ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F.(1)求证:CD=FA;(2)若使∠F=∠BCF,平行四边形ABCD的边长之间还需再
答案:2 悬赏:50 手机版
解决时间 2021-01-04 05:18
- 提问者网友:川水往事
- 2021-01-04 00:44
最佳答案
- 五星知识达人网友:往事隔山水
- 2021-01-04 01:11
(1)证明:∵四边形ABCD是平行四边形,
∴CD∥AB.
又∵CE的延长线交BA的延长线于点F,
∴∠CDA=∠DAF.
∵E是AD中点,
∴DE=AE.
∵∠CED=∠AEF,
∴△CDE≌△AEF.
∴CD=AF.
(2)要使∠F=∠BCF,需平行四边形ABCD的边长之间是2倍的关系,即BC=2AB,
证明:∵由(1)知,△CED≌△FEA,
∴CD=AF.
又∵四边形ABCD是平行四边形,
∴CD=AB.
∴AB=AF,即BF=2AB.
∵BC=2AB.
∴BF=BC,
∴∠F=∠BCF.解析分析:第(1)问根据平行四边形的性质,-就可证明CD∥AB,∠CDA=∠DAF,又已知DE=AE,∠CED=∠AEF,符合全等三角形的判定中的ASA,即证△CDE≌△AEF,所以CD=AF.
第(2)问在第(1)问的基础上,若使∠F=∠BCF,逆推就必须BC=BF,继而推出BC=2BA,即为所求.点评:本题考查了平行四边形的性质和全等三角形的判定的综合运用,也是基础题.
∴CD∥AB.
又∵CE的延长线交BA的延长线于点F,
∴∠CDA=∠DAF.
∵E是AD中点,
∴DE=AE.
∵∠CED=∠AEF,
∴△CDE≌△AEF.
∴CD=AF.
(2)要使∠F=∠BCF,需平行四边形ABCD的边长之间是2倍的关系,即BC=2AB,
证明:∵由(1)知,△CED≌△FEA,
∴CD=AF.
又∵四边形ABCD是平行四边形,
∴CD=AB.
∴AB=AF,即BF=2AB.
∵BC=2AB.
∴BF=BC,
∴∠F=∠BCF.解析分析:第(1)问根据平行四边形的性质,-就可证明CD∥AB,∠CDA=∠DAF,又已知DE=AE,∠CED=∠AEF,符合全等三角形的判定中的ASA,即证△CDE≌△AEF,所以CD=AF.
第(2)问在第(1)问的基础上,若使∠F=∠BCF,逆推就必须BC=BF,继而推出BC=2BA,即为所求.点评:本题考查了平行四边形的性质和全等三角形的判定的综合运用,也是基础题.
全部回答
- 1楼网友:未来江山和你
- 2021-01-04 01:53
我好好复习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯