求解 (高悬赏) ∫e^x cos 3x dx = 1/3 ∫e^x d(sin3x)
答案:3 悬赏:40 手机版
解决时间 2021-03-25 07:38
- 提问者网友:捧腹剧
- 2021-03-24 08:03
求解 (高悬赏) ∫e^x cos 3x dx = 1/3 ∫e^x d(sin3x)
最佳答案
- 五星知识达人网友:傲气稳了全场
- 2021-03-24 09:05
做两次分部积分即可
I=∫(e^x) cos 3x dx=1/3 ∫(e^x) d(sin3x)=(1/3) (e^x)sin3x-(1/3)∫ sin3xd(e^x)
=(1/3)(e^x)sin3x-(1/3)∫ (e^x)sin3xdx=(1/3)(e^x)sin3x+(1/9)∫ (e^x)dcos3x
=(1/3)(e^x)sin3x+(1/9)(e^x)cos3x-(1/9)∫ cos3xd (e^x)
=(1/3)(e^x)sin3x+(1/9)(e^x)cos3x-(1/9)∫ (e^x)cos3xd x
=(1/3)(e^x)sin3x+(1/9)(e^x)cos3x-(1/9)I
I=(3/10)(e^x)sin3x+(1/10)(e^x)cos3x+C
=[3sin3x+cos3x](e^x)/10+C
或者使用复数积分
∫e^x cos 3x dx=Re(∫e^x e^(3IX) dx)=Re(∫e^(x(1+3I)) dx)
=Re(e^(x(1+3I))/ (1+3I)+C )=Re((1-3I)e^(x(1+3I))/10+C )
=[cos3x+3sin3x](e^x)/10+C
I=∫(e^x) cos 3x dx=1/3 ∫(e^x) d(sin3x)=(1/3) (e^x)sin3x-(1/3)∫ sin3xd(e^x)
=(1/3)(e^x)sin3x-(1/3)∫ (e^x)sin3xdx=(1/3)(e^x)sin3x+(1/9)∫ (e^x)dcos3x
=(1/3)(e^x)sin3x+(1/9)(e^x)cos3x-(1/9)∫ cos3xd (e^x)
=(1/3)(e^x)sin3x+(1/9)(e^x)cos3x-(1/9)∫ (e^x)cos3xd x
=(1/3)(e^x)sin3x+(1/9)(e^x)cos3x-(1/9)I
I=(3/10)(e^x)sin3x+(1/10)(e^x)cos3x+C
=[3sin3x+cos3x](e^x)/10+C
或者使用复数积分
∫e^x cos 3x dx=Re(∫e^x e^(3IX) dx)=Re(∫e^(x(1+3I)) dx)
=Re(e^(x(1+3I))/ (1+3I)+C )=Re((1-3I)e^(x(1+3I))/10+C )
=[cos3x+3sin3x](e^x)/10+C
全部回答
- 1楼网友:傲气稳了全场
- 2021-03-24 12:04
不会
- 2楼网友:酒醒三更
- 2021-03-24 10:37
你是想网友们帮你解不定积分么?追问对啊!追答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯