已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.
求证:(1)△ADF≌△CBE;
(2)连接DE、BF,试判断四边形DEBF的形状,并说明理由.
已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)连接DE、BF,试判断四边形DEBF的形状,并说明理由.
答案:2 悬赏:80 手机版
解决时间 2021-04-13 18:07
- 提问者网友:我是我
- 2021-04-13 14:58
最佳答案
- 五星知识达人网友:平生事
- 2021-04-13 15:31
证明:(1)∵ABCD是平行四边形,
∴AD=BC,AD∥BC(1分)
∴∠DAF=∠BCA(2分),∵AE=CF,
∴AE+EF=CF+EF,即AF=CE(3分)
∴△ADF≌△CBE(4分)
(2)四边形DEBF是平行四边形(5分)
∵△ADF≌△CBE,
∴∠DFA=∠BEC,DF=BE,
∴DF∥BE,
∴四边形DEBF是平行四边形(6分)解析分析:(1)根据平行四边形的性质对边平行且相等得到AD与BC平行且相等,由AD与BC平行得到内错角∠DAF与∠BCA相等,再由已知的AE=CF,根据“SAS”得到△ADF与△CBE全等;(2)由(1)证出的全等,根据全等三角形的性质得到DF与EB相等且∠DFA与∠BEC相等,由内错角相等两直线平行得到DF与BE平行,根据一组对边平行且相等的四边形为平行四边形即可得到四边形DEBF的形状.点评:本题综合考查了全等三角形的判断与性质,以及平行四边形的判断与性质.其中第2问是一道先试验猜想,再探索证明的新型题,其目的是考查学生提出问题,解决问题的能力,这类几何试题将成为今后中考的热点试题.
∴AD=BC,AD∥BC(1分)
∴∠DAF=∠BCA(2分),∵AE=CF,
∴AE+EF=CF+EF,即AF=CE(3分)
∴△ADF≌△CBE(4分)
(2)四边形DEBF是平行四边形(5分)
∵△ADF≌△CBE,
∴∠DFA=∠BEC,DF=BE,
∴DF∥BE,
∴四边形DEBF是平行四边形(6分)解析分析:(1)根据平行四边形的性质对边平行且相等得到AD与BC平行且相等,由AD与BC平行得到内错角∠DAF与∠BCA相等,再由已知的AE=CF,根据“SAS”得到△ADF与△CBE全等;(2)由(1)证出的全等,根据全等三角形的性质得到DF与EB相等且∠DFA与∠BEC相等,由内错角相等两直线平行得到DF与BE平行,根据一组对边平行且相等的四边形为平行四边形即可得到四边形DEBF的形状.点评:本题综合考查了全等三角形的判断与性质,以及平行四边形的判断与性质.其中第2问是一道先试验猜想,再探索证明的新型题,其目的是考查学生提出问题,解决问题的能力,这类几何试题将成为今后中考的热点试题.
全部回答
- 1楼网友:孤老序
- 2021-04-13 16:22
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯