圆周率问题?
答案:4 悬赏:20 手机版
解决时间 2021-05-15 22:20
- 提问者网友:杀生予夺
- 2021-05-15 08:21
我国圆周率是哪本书出的?
最佳答案
- 五星知识达人网友:刀戟声无边
- 2021-05-15 09:40
我国古代很早就得出了比较精确的圆周率。魏、晋时期的数学家刘徽曾算出圆周率的近似分数为,如果化为小数的话,相当于3.1416。而公元前3世纪,古希腊的阿基米德知道的<π<和公元2世纪时托勒密所取的π值3.141667,皆比刘徽所得的要粗疏。我国古籍《隋书·律历志》记载,南北朝的科学家祖冲之重新推算圆周率,知道π的真值在3.1415926与3.1415927之间,他还算出了两个π的渐近分数:约率与密率,比刘徽的结果更加精确。德国人奥托在1573年才重新得出祖冲之已经算出的密率,落后了11个世纪。
全部回答
- 1楼网友:深街酒徒
- 2021-05-15 11:36
《周髀算经》
《九章算术》
《缀术》
《几何原本》
都有
- 2楼网友:鱼忧
- 2021-05-15 10:00
祖冲之的《綴术》
- 3楼网友:思契十里
- 2021-05-15 09:51
古希腊欧几里德《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取pi=(4/3)^4≒3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。
德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。
德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯