解关于x的不等式ax²-(a+1)x+1<0
答案:4 悬赏:80 手机版
解决时间 2021-02-11 19:12
- 提问者网友:疯子也有疯子的情调
- 2021-02-11 01:30
解关于x的不等式ax²-(a+1)x+1<0
最佳答案
- 五星知识达人网友:深街酒徒
- 2021-02-11 01:52
解答过程如下:
a>1,范围在(1/a,1);
a=1时,不存在小于0的范围;
0<a<1时,则范围在(1,1/a);
a<0,则范围在(负无穷,1/a)和(1,正无穷)
扩展资料
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
a>1,范围在(1/a,1);
a=1时,不存在小于0的范围;
0<a<1时,则范围在(1,1/a);
a<0,则范围在(负无穷,1/a)和(1,正无穷)
扩展资料
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
全部回答
- 1楼网友:风格不统一
- 2021-02-11 02:40
i)当a=0时,原不等式化为-x+1<0, ∴x>1;
ii)当a≠0时,方程ax^2-(a+1)x+1=0的实数根为x1=1, x2=1/a;
(a)若a<0, 则x1>x2,∴不等式的解集为x<1/a,或x>1;
(b)若0<a<1, 则x1<x2, ∴不等式的解集为1<x<1/a;
(c)若a=1, 则x1=x2=1, 原不等式变为(x-1)^2<0, ∴解集为空集;
(d)若a>1, 则x1>x2, ∴不等式的解集为1/a<x<1.
- 2楼网友:神鬼未生
- 2021-02-11 02:29
ax^2-(a+1)x+1<0 (ax-1)(x-1)<0 ①当a=0时 -(x-1)<0 解得x>1 ②当a>0时 1/a和1比较大小 当a>1时 1/a<1 解得1/a<x<1 当a=1时 1/a=1 x无解 当0<a<1时 1/a>1 解得1<x<1/a ③当a<0时 (ax-1)(x-1)<0 两边同除以a (x-1/a)(x-1)>0 解得x<1/a 或 x>1
- 3楼网友:从此江山别
- 2021-02-11 02:11
解:
1、当a>0时:
ax²-(a+1)x+1<0
x²-[(a+1)/a]x+1/a<0
x²-2×[(a+1)/(2a)]x+[(a+1)/(2a)]²-[(a+1)/(2a)]²+1/a<0
[x-(a+1)/(2a)]²<[(a+1)/(2a)]²-1/a
[x-(a+1)/(2a)]²<[(a-1)/(2a)]²
(1)a≥1时:
(a+1)/(2a)-(a-1)/(2a)<x<(a+1)/(2a)+(a-1)/(2a)
1/a<x<1
(2)a<1时:
[x-(a+1)/(2a)]²<[(a-1)/(2a)]²
1<x<1/a
故所得为:
当a≥1时:x∈(1/a,1)
当0<a<1时:x∈(1,1/a)
2、当a<0时:
ax²-(a+1)x+1<0
x²-[(a+1)/a]x+1/a>0
同理,有:
[x-(a+1)/(2a)]²>[(a-1)/(2a)]²
因为a<0,
有:x-(a+1)/(2a)>(1-a)/(2a)
或:x-(a+1)/(2a)<-(1-a)/(2a)
解得:x>1/a,或:x<1
即:x∈(-∞,1),或x∈(1/a,∞)
3、当a=0时:
ax²-(a+1)x+1<0
-x+1<0
x>1
综上所述,所给不
等式的解为:
1、当a∈[1,∞)时:x∈(1/a,1)
2、当a∈(0,1)时:x∈(1,1/a)
3、当a=0时:x∈(1,∞)
4、当a∈(-∞,0)时:x∈(-∞,1),或x∈(1/a,∞)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯